|
|
|
#
|
|
|
|
# wpylib.math.fitting.stochastic module
|
|
|
|
# Created: 20150528
|
|
|
|
# Wirawan Purwanto
|
|
|
|
#
|
|
|
|
# Dependencies:
|
|
|
|
# - numpy
|
|
|
|
# - scipy
|
|
|
|
# - matplotlib (for visualization routines)
|
|
|
|
#
|
|
|
|
|
|
|
|
"""
|
|
|
|
wpylib.math.fitting.stochastic module
|
|
|
|
|
|
|
|
Tools for stochastic curve fitting.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
import numpy.random
|
|
|
|
|
|
|
|
from wpylib.math.fitting import fit_func_base
|
|
|
|
from wpylib.math.stats.errorbar import errorbar
|
|
|
|
|
|
|
|
|
|
|
|
class StochasticFitting(object):
|
|
|
|
"""Standard stochastic fit procedure.
|
|
|
|
|
|
|
|
Class attributes:
|
|
|
|
|
|
|
|
* `func`: function ansatz to be fitted.
|
|
|
|
Set via init_func() method.
|
|
|
|
This `func` needs to be a descendant of the fit_func_base object,
|
|
|
|
or have an identical API, which are:
|
|
|
|
|
|
|
|
- method `fit`
|
|
|
|
- method `__call__` (i.e. a callable object)
|
|
|
|
|
|
|
|
"""
|
|
|
|
debug = 0
|
|
|
|
dbg_guess_params = True
|
|
|
|
def_opt_report_final_params = 3
|
|
|
|
def __init__(self):
|
|
|
|
self.use_nlf_guess = 1
|
|
|
|
self.use_dy_weights = True
|
|
|
|
|
|
|
|
def init_func(self, func):
|
|
|
|
self.func = func
|
|
|
|
|
|
|
|
def init_samples(self, x, y, dy):
|
|
|
|
"""
|
|
|
|
Initializes the sample data against which we will perform
|
|
|
|
the stochastic fitting.
|
|
|
|
This function takes N measurement samples:
|
|
|
|
- the (multidimensional) domain points, x
|
|
|
|
- the measured target points, y
|
|
|
|
- the uncertainty of the target points, dy
|
|
|
|
|
|
|
|
"""
|
|
|
|
# fix (or, actually, provide an accomodation for) a common "mistake"
|
|
|
|
# for 1-D domain: make it standard by adding the "first" dimension
|
|
|
|
x = fit_func_base.domain_array(x)
|
|
|
|
|
|
|
|
self.samples_x = x
|
|
|
|
self.samples_y = numpy.array(y)
|
|
|
|
self.samples_dy = numpy.array(dy)
|
|
|
|
self.samples_wt = (self.samples_dy)**(-2)
|
|
|
|
|
|
|
|
if not (len(x[0]) == len(y) == len(dy)):
|
|
|
|
raise TypeError, "Length of x, y, dy arrays are not identical."
|
|
|
|
|
|
|
|
def init_rng(self, seed=None, rng_class=numpy.random.RandomState):
|
|
|
|
"""Initializes a standard random number generator for use in
|
|
|
|
the fitting routine."""
|
|
|
|
if seed == None:
|
|
|
|
seed = numpy.random.randint(numpy.iinfo(int).max)
|
|
|
|
print "Using random seed: ", seed
|
|
|
|
self.rng_seed = seed
|
|
|
|
self.rng = rng_class(seed)
|
|
|
|
|
|
|
|
def num_fit_params(self):
|
|
|
|
"""An ad-hoc way to determine the number of fitting parameters.
|
|
|
|
|
|
|
|
FIXME: There is still not an a priori way to find the number of
|
|
|
|
fit parameters in the fit_func_base class or its derivatives.
|
|
|
|
|
|
|
|
There are a few after-the-fact ways to determine this:
|
|
|
|
|
|
|
|
1) Once the "deterministic" nonlinear fit is done, you can find the
|
|
|
|
number of parameters by
|
|
|
|
|
|
|
|
len(self.log_nlf_params)
|
|
|
|
|
|
|
|
2) Once the stochastic fit is done, you can also find the number
|
|
|
|
of fit parameters by
|
|
|
|
|
|
|
|
len(self.log_mc_params[0])
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
return len(self.log_nlf_params)
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
try:
|
|
|
|
return len(self.log_mc_params[0])
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
raise RuntimeError, "Cannot determine the number of fit parameters."
|
|
|
|
|
|
|
|
def nlfit1(self):
|
|
|
|
"""Performs the non-stochastic, standard nonlinear fit.
|
|
|
|
The output is given in `nlf_rec` attribute."""
|
|
|
|
from numpy.linalg import norm
|
|
|
|
|
|
|
|
if self.use_dy_weights:
|
|
|
|
dy = self.samples_dy
|
|
|
|
else:
|
|
|
|
dy = None
|
|
|
|
rslt = self.func.fit(self.samples_x, self.samples_y, dy=dy)
|
|
|
|
self.log_nlf_params = rslt
|
|
|
|
self.nlf_f = self.func(self.log_nlf_params, self.samples_x)
|
|
|
|
|
|
|
|
last_fit = self.func.last_fit
|
|
|
|
mval_resid = self.nlf_f - self.samples_y
|
|
|
|
self.nlf_ussr = norm(mval_resid)**2
|
|
|
|
self.nlf_wssr = norm(mval_resid / self.samples_dy)**2
|
|
|
|
self.nlf_funcalls = last_fit['funcalls']
|
|
|
|
self.nlf_rec = last_fit
|
|
|
|
|
|
|
|
def mcfit_step1_toss_dice_(self):
|
|
|
|
"""Generates a single Monte Carlo dataset for the mcfit_step1_
|
|
|
|
procedure."""
|
|
|
|
self.dice_dy = self.rng.normal(size=len(self.samples_dy))
|
|
|
|
self.dice_y = self.samples_y + self.samples_dy * self.dice_dy
|
|
|
|
|
|
|
|
def mcfit_step1_(self):
|
|
|
|
"""Performs a single Monte Carlo data fit."""
|
|
|
|
# Var name conventions:
|
|
|
|
# - dice_* = values related to one "dice toss" of the sample
|
|
|
|
# - mval_* = values related to the mean value of the samples
|
|
|
|
# (i.e. samples_y)
|
|
|
|
# FIXME: In future this *could* be run in parallel but the state vars
|
|
|
|
# (such as dice_y, dice_dy, etc.) must be stored on per-thread basis.
|
|
|
|
from numpy.linalg import norm
|
|
|
|
self.mcfit_step1_toss_dice_()
|
|
|
|
if self.use_dy_weights:
|
|
|
|
dy = self.samples_dy
|
|
|
|
else:
|
|
|
|
dy = None
|
|
|
|
rslt = self.func.fit(self.samples_x, self.dice_y, dy=dy,
|
|
|
|
Guess=self.dice_param_guess,
|
|
|
|
)
|
|
|
|
# fit result of the stochastic data
|
|
|
|
self.dice_params = rslt
|
|
|
|
self.log_mc_params.append(rslt)
|
|
|
|
self.dice_f = self.func(self.dice_params, self.samples_x)
|
|
|
|
|
|
|
|
if self.dbg_guess_params:
|
|
|
|
self.log_guess_params.append(self.func.guess_params)
|
|
|
|
|
|
|
|
last_fit = self.func.last_fit
|
|
|
|
dice_resid = self.dice_f - self.dice_y
|
|
|
|
mval_resid = self.dice_f - self.samples_y
|
|
|
|
dice_ussr = norm(dice_resid)**2
|
|
|
|
dice_wssr = norm(dice_resid / self.samples_dy)**2
|
|
|
|
mval_ussr = norm(mval_resid)**2
|
|
|
|
mval_wssr = norm(mval_resid / self.samples_dy)**2
|
|
|
|
self.log_mc_stats.append((dice_ussr, dice_wssr, mval_ussr, mval_wssr))
|
|
|
|
self.log_mc_funcalls.append(last_fit['funcalls'])
|
|
|
|
|
|
|
|
def mcfit_step1_viz_(self, save=True):
|
|
|
|
"""Generates a visual representation of the last MC fit step.
|
|
|
|
"""
|
|
|
|
from matplotlib import pyplot
|
|
|
|
if not hasattr(self, "fig"):
|
|
|
|
self.fig = pyplot.figure()
|
|
|
|
self.fig.clf()
|
|
|
|
ax = self.fig.add_subplot(1, 1, 1)
|
|
|
|
title = "MC fit step %d" % self.mcfit_iter_num
|
|
|
|
ax.set_title(title)
|
|
|
|
x,y,dy = self.samples_x[0], self.samples_y, self.samples_dy
|
|
|
|
ax.errorbar(x=x, y=y, yerr=dy,
|
|
|
|
fmt="x", color="SlateGray", label="QMC",
|
|
|
|
)
|
|
|
|
samples_xmin = x.min()
|
|
|
|
samples_xmax = x.max()
|
|
|
|
samples_xrange = samples_xmax - samples_xmin
|
|
|
|
samples_ymin = y.min()
|
|
|
|
samples_ymax = y.max()
|
|
|
|
samples_yrange = samples_ymax - samples_ymin
|
|
|
|
len_plot_x = 10*len(y)
|
|
|
|
plot_x = numpy.linspace(start=samples_xmin - 0.03 * samples_xrange,
|
|
|
|
stop=samples_xmax + 0.03 * samples_xrange,
|
|
|
|
num=len_plot_x,
|
|
|
|
endpoint=True)
|
|
|
|
ax.plot(plot_x, self.func(self.nlf_rec.xopt, [plot_x]), "-",
|
|
|
|
color="SlateGray", label="nlfit")
|
|
|
|
ax.errorbar(x=x, y=self.dice_y, yerr=dy,
|
|
|
|
fmt="or", label="MC toss",
|
|
|
|
)
|
|
|
|
ax.plot(plot_x, self.func(self.dice_params, [plot_x]), "-",
|
|
|
|
color="salmon", label="MC fit")
|
|
|
|
|
|
|
|
samples_dy_max = numpy.max(self.samples_dy)
|
|
|
|
ax.set_ylim((samples_ymin - samples_dy_max * 8, samples_ymax + samples_dy_max * 8))
|
|
|
|
if save:
|
|
|
|
self.fig.savefig("mcfit-%04d.png" % self.mcfit_iter_num)
|
|
|
|
|
|
|
|
def mcfit_loop_begin_(self):
|
|
|
|
"""Performs final initialization before firing up mcfit_loop_.
|
|
|
|
This need to be done only before the first mcfit_loop_() call;
|
|
|
|
if more samples are collected later, then this routine should NOT be
|
|
|
|
called again or else all the accumulators would reset."""
|
|
|
|
self.log_guess_params = []
|
|
|
|
self.log_mc_params = []
|
|
|
|
self.log_mc_stats = []
|
|
|
|
self.log_mc_funcalls = []
|
|
|
|
if self.use_nlf_guess:
|
|
|
|
print "Using guess param from NLF: ",
|
|
|
|
self.nlfit1()
|
|
|
|
self.dice_param_guess = self.log_nlf_params
|
|
|
|
#print "- Params = ", self.log_nlf_params
|
|
|
|
print self.log_nlf_params
|
|
|
|
else:
|
|
|
|
self.dice_param_guess = None
|
|
|
|
|
|
|
|
def mcfit_loop_end_(self):
|
|
|
|
"""Performs final initialization before firing up do_mc_fitting:
|
|
|
|
- Repackage log_mc_stats and log_mc_params as numpy array of structs
|
|
|
|
"""
|
|
|
|
# Number of fit parameters:
|
|
|
|
num_params = len(self.log_mc_params[0])
|
|
|
|
#if True:
|
|
|
|
try:
|
|
|
|
pnames = self.func.param_names
|
|
|
|
assert len(pnames) == num_params # Otherwise it will be faulty
|
|
|
|
if self.func.use_lmfit_method:
|
|
|
|
#from lmfit import Parameter
|
|
|
|
ptype = float
|
|
|
|
else:
|
|
|
|
ptype = float
|
|
|
|
param_dtype = [ (i, ptype) for i in pnames ]
|
|
|
|
except:
|
|
|
|
param_dtype = [ ("C"+str(i), float) for i in xrange(num_params) ]
|
|
|
|
stats_dtype = [ (i, float) for i in ('dice_ussr', 'dice_wssr', 'mval_ussr', 'mval_wssr') ]
|
|
|
|
|
|
|
|
# Can't initialize the self.mc_params array in a single step with
|
|
|
|
# numpy.array construction function; we must copy the records one by one.
|
|
|
|
# The reason is this: each element of the log_mc_params list is already
|
|
|
|
# a numpy ndarray object.
|
|
|
|
self.mc_params = numpy.empty((len(self.log_mc_params),), dtype=param_dtype)
|
|
|
|
for (i,p) in enumerate(self.log_mc_params):
|
|
|
|
if self.func.use_lmfit_method:
|
|
|
|
self.mc_params[i] = tuple(p)
|
|
|
|
else:
|
|
|
|
self.mc_params[i] = p
|
|
|
|
self.mc_stats = numpy.array(self.log_mc_stats, dtype=stats_dtype)
|
|
|
|
self.fit_parameters = [ p[0] for p in param_dtype ]
|
|
|
|
|
|
|
|
def mcfit_analysis_(self):
|
|
|
|
"""Performs analysis of the Monte Carlo fitting.
|
|
|
|
This version does no weighting or filtering based on some cutoff criteria.
|
|
|
|
"""
|
|
|
|
flds = self.fit_parameters # == self.mc_params.dtype.names
|
|
|
|
rslt = {}
|
|
|
|
for F in flds:
|
|
|
|
mean = numpy.average(self.mc_params[F])
|
|
|
|
err = numpy.std(self.mc_params[F])
|
|
|
|
rslt[F] = errorbar(mean, err)
|
|
|
|
self.final_mc_params = rslt
|
|
|
|
|
|
|
|
def mcfit_loop1_(self, num_iter, save_fig=0):
|
|
|
|
"""Performs the Monte-Carlo fit simulation after the
|
|
|
|
input parameters are set up."""
|
|
|
|
|
|
|
|
for i in xrange(num_iter):
|
|
|
|
self.mcfit_iter_num = i
|
|
|
|
if self.debug >= 2:
|
|
|
|
print "mcfit_loop1_: iteration %d" % i
|
|
|
|
self.mcfit_step1_()
|
|
|
|
if save_fig:
|
|
|
|
self.mcfit_step1_viz_(save=True)
|
|
|
|
|
|
|
|
def mcfit_report_final_params(self, format=None):
|
|
|
|
if format == None:
|
|
|
|
format = getattr(self, "opt_report_final_params", self.def_opt_report_final_params)
|
|
|
|
if format in (None, False, 0):
|
|
|
|
return # quiet!
|
|
|
|
|
|
|
|
parm = self.final_mc_params
|
|
|
|
if format == 3:
|
|
|
|
print "Final parameters :",
|
|
|
|
print " ".join([
|
|
|
|
"%s" % (parm[k],) for k in self.fit_parameters
|
|
|
|
])
|
|
|
|
elif format == 2:
|
|
|
|
print "Final parameters:"
|
|
|
|
print "\n".join([
|
|
|
|
" %s = %s" % (k, parm[k])
|
|
|
|
for k in self.fit_parameters
|
|
|
|
])
|
|
|
|
elif format == 1:
|
|
|
|
print "Final parameters:"
|
|
|
|
print parm
|
|
|
|
|
|
|
|
def mcfit_run1(self, x=None, y=None, dy=None, data=None, func=None, rng_params=None,
|
|
|
|
num_iter=100, save_fig=False):
|
|
|
|
"""The main routine to perform stochastic fit."""
|
|
|
|
if data != None:
|
|
|
|
raise NotImplementedError
|
|
|
|
elif dy != None:
|
|
|
|
# Assume OK
|
|
|
|
pass
|
|
|
|
elif y != None and dy == None:
|
|
|
|
y_orig = y
|
|
|
|
y = errorbar_mean(y_orig)
|
|
|
|
dy = errorbar_err(y_orig)
|
|
|
|
else:
|
|
|
|
raise TypeError, "Invalid argument combination for the input data."
|
|
|
|
|
|
|
|
if func != None:
|
|
|
|
self.init_func(func)
|
|
|
|
if not hasattr(self, "func"):
|
|
|
|
raise RuntimeError, \
|
|
|
|
"The fit function in the fitting object is undefined."
|
|
|
|
self.init_samples(x=x,
|
|
|
|
y=y,
|
|
|
|
dy=dy,
|
|
|
|
)
|
|
|
|
if rng_params != None:
|
|
|
|
self.init_rng(**rng_params)
|
|
|
|
elif not hasattr(self, "rng"):
|
|
|
|
self.init_rng()
|
|
|
|
|
|
|
|
self.mcfit_loop_begin_()
|
|
|
|
self.mcfit_loop1_(num_iter=num_iter, save_fig=save_fig)
|
|
|
|
self.mcfit_loop_end_()
|
|
|
|
self.mcfit_analysis_()
|
|
|
|
self.mcfit_report_final_params()
|
|
|
|
return self.final_mc_params
|
|
|
|
|
|
|
|
# The two routines below gives convenient way to evaluate the
|
|
|
|
# fitted curve at arbitrary x values (good so long as they are not
|
|
|
|
# far out from the range given by self.samples_x)
|
|
|
|
|
|
|
|
def mcfit_eval_raw(self, x=None, yscale=1.0):
|
|
|
|
"""Evaluates the curve (y) values for a given set of x value(s).
|
|
|
|
This routine generates the raw values based on the stochastically
|
|
|
|
sampled parameter values."""
|
|
|
|
if x == None:
|
|
|
|
x = self.samples_x
|
|
|
|
else:
|
|
|
|
x = fit_func_base.domain_array(x)
|
|
|
|
|
|
|
|
xlen = len(x[0])
|
|
|
|
mc_curve_y = numpy.empty((len(self.mc_params), xlen))
|
|
|
|
# The following loop could have been written as a batch operation,
|
|
|
|
# but it requires some nontrivial change in the convention of how
|
|
|
|
# fit_func_base.__call__() is written.
|
|
|
|
# Double broadcasting and other dimensional retrofitting/reduction
|
|
|
|
# ('dot product'?) may be required.
|
|
|
|
# Example: in harm_fit_func class, the statement
|
|
|
|
# xdisp = (x[0] - C[2])
|
|
|
|
# will have to be changed becasuse the length of x[0]
|
|
|
|
# (which is the number of data points in the "x" argument)
|
|
|
|
# and the length of C[2]
|
|
|
|
# (which is the number of MC iterations)
|
|
|
|
# will not match--and these numbers must NOT be subtracted elementwise!
|
|
|
|
for (i,ppp) in enumerate(self.mc_params):
|
|
|
|
mc_curve_y[i] = self.func(ppp, x)
|
|
|
|
|
|
|
|
return mc_curve_y
|
|
|
|
|
|
|
|
def mcfit_eval(self, x=None, yscale=1.0, ddof=1, outfmt=0):
|
|
|
|
"""Evaluates the curve (y) values for a given set of x value(s).
|
|
|
|
This routine generates the finalized values (with errorbar estimate)
|
|
|
|
based on the stochastically sampled parameter values."""
|
|
|
|
|
|
|
|
# WARNING: CONVENTION CHANGES FROM ORIGINAL make_curve_errorbar() ROUTINE!
|
|
|
|
# The default delta degree of freedom (ddof) should be 1 because we need
|
|
|
|
# to take one out for the average itself.
|
|
|
|
# If you need to reproduce old result, can revert to ddof=0.
|
|
|
|
if x == None:
|
|
|
|
x = self.samples_x
|
|
|
|
else:
|
|
|
|
x = fit_func_base.domain_array(x)
|
|
|
|
mc_curve_y = self.mcfit_eval_raw(x=x)
|
|
|
|
|
|
|
|
xlen = len(x[0])
|
|
|
|
final_mc_curve = numpy.empty((xlen,), dtype=[('val',float),('err',float)])
|
|
|
|
final_mc_curve['val'] = numpy.average(mc_curve_y, axis=0)
|
|
|
|
final_mc_curve['err'] = numpy.std(mc_curve_y, axis=0, ddof=ddof)
|
|
|
|
if yscale != 1.0:
|
|
|
|
final_mc_curve['val'] *= yscale
|
|
|
|
final_mc_curve['err'] *= yscale
|
|
|
|
if outfmt == 0:
|
|
|
|
pass # already in that format
|
|
|
|
elif outfmt == 1:
|
|
|
|
# Formatted as an array of "errorbar" objects
|
|
|
|
final_mc_curve = numpy.array([errorbar(y,dy) for (y,dy) in final_mc_curve], dtype=errorbar)
|
|
|
|
else:
|
|
|
|
raise ValueError, "Unsupported outfmt value=%s." % (outfmt)
|
|
|
|
return final_mc_curve
|
|
|
|
|
|
|
|
def mcfit_dump_param_samples(self, out):
|
|
|
|
"""Dump the generated parameter samples for diagnostic purposes.
|
|
|
|
"""
|
|
|
|
O = text_output(out)
|
|
|
|
pnames = self.mc_params.dtype.names
|
|
|
|
snames = self.mc_stats.dtype.names
|
|
|
|
O.write("# %s ; %s ; nfev\n" % (" ".join(pnames), " ".join(snames)))
|
|
|
|
O.write(matrix_str(array_hstack([ self.mc_params[k] for k in pnames ] + \
|
|
|
|
[ self.mc_stats[k] for k in snames ] + \
|
|
|
|
[ self.log_mc_funcalls]),
|
|
|
|
" %#17.10g")+ "\n")
|
|
|
|
|
|
|
|
|
|
|
|
|