* Added module: wpylib.math.fitting.stochastic.

NOTE: Only imported verbatimly from Cr2_analysis_cbs.py CVS rev 1.143.
master
Wirawan Purwanto 10 years ago
parent 1a537af020
commit 39dddbd51d
  1. 403
      math/fitting/stochastic.py

@ -0,0 +1,403 @@
#
# wpylib.math.fitting.stochastic module
# Created: 20150528
# Wirawan Purwanto
#
# Dependencies:
# - numpy
# - scipy
# - matplotlib (for visualization routines)
#
"""
wpylib.math.fitting.stochastic module
Tools for stochastic curve fitting.
"""
from wpylib.math.fitting import fit_func_base
class StochasticFitting(object):
"""Standard stochastic fit procedure.
"""
debug = 0
dbg_guess_params = True
def_opt_report_final_params = 3
def __init__(self):
self.use_nlf_guess = 1
self.use_dy_weights = True
def init_func(self, func):
self.func = func
def init_samples(self, x, y, dy):
"""
Initializes the sample data against which we will perform
the stochastic fitting.
This function takes N measurement samples:
- the (multidimensional) domain points, x
- the measured target points, y
- the uncertainty of the target points, dy
"""
x = fit_func_base.domain_array(x)
if not (len(x[0]) == len(y) == len(dy)):
raise TypeError, "Length of x, y, dy arrays are not identical."
# fix (or, actually, provide an accomodation for) a common "mistake"
# for 1-D domain: make it standard by adding the "first" dimension
if len(x.shape) == 1:
x = x.reshape((1, x.shape[0]))
self.samples_x = x
self.samples_y = numpy.array(y)
self.samples_dy = numpy.array(dy)
self.samples_wt = (self.samples_dy)**(-2)
def init_rng(self, seed=None, rng_class=numpy.random.RandomState):
"""Initializes a standard random number generator for use in
the fitting routine."""
if seed == None:
seed = numpy.random.randint(numpy.iinfo(int).max)
print "Using random seed: ", seed
self.rng_seed = seed
self.rng = rng_class(seed)
def num_fit_params(self):
"""An ad-hoc way to determine the number of fitting parameters.
FIXME: There is still not an a priori way to find the number of
fit parameters in the fit_func_base class or its derivatives.
There are a few after-the-fact ways to determine this:
1) Once the "deterministic" nonlinear fit is done, you can find the
number of parameters by
len(self.log_nlf_params)
2) Once the stochastic fit is done, you can also find the number
of fit parameters by
len(self.log_mc_params[0])
"""
try:
return len(self.log_nlf_params)
except:
pass
try:
return len(self.log_mc_params[0])
except:
pass
raise RuntimeError, "Cannot determine the number of fit parameters."
def nlfit1(self):
"""Performs the non-stochastic, standard nonlinear fit."""
from numpy.linalg import norm
if self.use_dy_weights:
dy = self.samples_dy
else:
dy = None
rslt = self.func.fit(self.samples_x, self.samples_y, dy=dy)
self.log_nlf_params = rslt
self.nlf_f = self.func(self.log_nlf_params, self.samples_x)
last_fit = self.func.last_fit
mval_resid = self.nlf_f - self.samples_y
self.nlf_ussr = norm(mval_resid)**2
self.nlf_wssr = norm(mval_resid / self.samples_dy)**2
self.nlf_funcalls = last_fit['funcalls']
self.nlf_rec = last_fit
def mcfit_step1_toss_dice_(self):
"""Generates a single Monte Carlo dataset for the mcfit_step1_
procedure."""
self.dice_dy = self.rng.normal(size=len(self.samples_dy))
self.dice_y = self.samples_y + self.samples_dy * self.dice_dy
def mcfit_step1_(self):
"""Performs a single Monte Carlo data fit."""
# Var name conventions:
# - dice_* = values related to one "dice toss" of the sample
# - mval_* = values related to the mean value of the samples
# (i.e. samples_y)
# FIXME: In future this *could* be run in parallel but the state vars
# (such as dice_y, dice_dy, etc.) must be stored on per-thread basis.
from numpy.linalg import norm
self.mcfit_step1_toss_dice_()
if self.use_dy_weights:
dy = self.samples_dy
else:
dy = None
rslt = self.func.fit(self.samples_x, self.dice_y, dy=dy,
Guess=self.dice_param_guess,
)
# fit result of the stochastic data
self.dice_params = rslt
self.log_mc_params.append(rslt)
self.dice_f = self.func(self.dice_params, self.samples_x)
if self.dbg_guess_params:
self.log_guess_params.append(self.func.guess_params)
last_fit = self.func.last_fit
dice_resid = self.dice_f - self.dice_y
mval_resid = self.dice_f - self.samples_y
dice_ussr = norm(dice_resid)**2
dice_wssr = norm(dice_resid / self.samples_dy)**2
mval_ussr = norm(mval_resid)**2
mval_wssr = norm(mval_resid / self.samples_dy)**2
self.log_mc_stats.append((dice_ussr, dice_wssr, mval_ussr, mval_wssr))
self.log_mc_funcalls.append(last_fit['funcalls'])
def mcfit_step1_viz_(self, save=True):
"""Generates a visual representation of the last MC fit step.
"""
from matplotlib import pyplot
if not hasattr(self, "fig"):
self.fig = pyplot.figure()
self.fig.clf()
ax = self.fig.add_subplot(1, 1, 1)
title = "MC fit step %d" % self.mcfit_iter_num
ax.set_title(title)
x,y,dy = self.samples_x[0], self.samples_y, self.samples_dy
ax.errorbar(x=x, y=y, yerr=dy,
fmt="x", color="SlateGray", label="QMC",
)
samples_xmin = x.min()
samples_xmax = x.max()
samples_xrange = samples_xmax - samples_xmin
samples_ymin = y.min()
samples_ymax = y.max()
samples_yrange = samples_ymax - samples_ymin
len_plot_x = 10*len(y)
plot_x = numpy.linspace(start=samples_xmin - 0.03 * samples_xrange,
stop=samples_xmax + 0.03 * samples_xrange,
num=len_plot_x,
endpoint=True)
ax.plot(plot_x, self.func(self.nlf_rec.xopt, [plot_x]), "-",
color="SlateGray", label="nlfit")
ax.errorbar(x=x, y=self.dice_y, yerr=dy,
fmt="or", label="MC toss",
)
ax.plot(plot_x, self.func(self.dice_params, [plot_x]), "-",
color="salmon", label="MC fit")
samples_dy_max = numpy.max(self.samples_dy)
ax.set_ylim((samples_ymin - samples_dy_max * 8, samples_ymax + samples_dy_max * 8))
if save:
self.fig.savefig("mcfit-%04d.png" % self.mcfit_iter_num)
def mcfit_loop_begin_(self):
"""Performs final initialization before firing up mcfit_loop_.
This need to be done only before the first mcfit_loop_() call;
if more samples are collected later, then this routine should NOT be
called again or else all the accumulators would reset."""
self.log_guess_params = []
self.log_mc_params = []
self.log_mc_stats = []
self.log_mc_funcalls = []
if self.use_nlf_guess:
print "Using guess param from NLF: ",
self.nlfit1()
self.dice_param_guess = self.log_nlf_params
#print "- Params = ", self.log_nlf_params
print self.log_nlf_params
else:
self.dice_param_guess = None
def mcfit_loop_end_(self):
"""Performs final initialization before firing up do_mc_fitting:
- Repackage log_mc_stats and log_mc_params as numpy array of structs
"""
# Number of fit parameters:
num_params = len(self.log_mc_params[0])
#if True:
try:
pnames = self.func.param_names
assert len(pnames) == num_params # Otherwise it will be faulty
if self.func.use_lmfit_method:
#from lmfit import Parameter
ptype = float
else:
ptype = float
param_dtype = [ (i, ptype) for i in pnames ]
except:
param_dtype = [ ("C"+str(i), float) for i in xrange(num_params) ]
stats_dtype = [ (i, float) for i in ('dice_ussr', 'dice_wssr', 'mval_ussr', 'mval_wssr') ]
# Can't initialize the self.mc_params array in a single step with
# numpy.array construction function; we must copy the records one by one.
# The reason is this: each element of the log_mc_params list is already
# a numpy ndarray object.
self.mc_params = numpy.empty((len(self.log_mc_params),), dtype=param_dtype)
for (i,p) in enumerate(self.log_mc_params):
if self.func.use_lmfit_method:
self.mc_params[i] = tuple(p)
else:
self.mc_params[i] = p
self.mc_stats = numpy.array(self.log_mc_stats, dtype=stats_dtype)
self.fit_parameters = [ p[0] for p in param_dtype ]
def mcfit_analysis_(self):
"""Performs analysis of the Monte Carlo fitting.
This version does no weighting or filtering based on some cutoff criteria.
"""
flds = self.fit_parameters # == self.mc_params.dtype.names
rslt = {}
for F in flds:
mean = numpy.average(self.mc_params[F])
err = numpy.std(self.mc_params[F])
rslt[F] = errorbar(mean, err)
self.final_mc_params = rslt
def mcfit_loop1_(self, num_iter, save_fig=0):
"""Performs the Monte-Carlo fit simulation after the
input parameters are set up."""
for i in xrange(num_iter):
self.mcfit_iter_num = i
if self.debug >= 2:
print "mcfit_loop1_: iteration %d" % i
self.mcfit_step1_()
if save_fig:
self.mcfit_step1_viz_(save=True)
def mcfit_report_final_params(self, format=None):
if format == None:
format = getattr(self, "opt_report_final_params", self.def_opt_report_final_params)
if format in (None, False, 0):
return # quiet!
parm = self.final_mc_params
if format == 3:
print "Final parameters :",
print " ".join([
"%s" % (parm[k],) for k in self.fit_parameters
])
elif format == 2:
print "Final parameters:"
print "\n".join([
" %s = %s" % (k, parm[k])
for k in self.fit_parameters
])
elif format == 1:
print "Final parameters:"
print parm
def mcfit_run1(self, x=None, y=None, dy=None, data=None, func=None, rng_params=None,
num_iter=100, save_fig=False):
"""The main routine to perform stochastic fit."""
if data != None:
raise NotImplementedError
elif dy != None:
# Assume OK
pass
elif y != None and dy == None:
y_orig = y
y = errorbar_mean(y_orig)
dy = errorbar_err(y_orig)
else:
raise TypeError, "Invalid argument combination for the input data."
if func != None:
self.init_func(func)
if not hasattr(self, "func"):
raise RuntimeError, \
"The fit function in the fitting object is undefined."
self.init_samples(x=x,
y=y,
dy=dy,
)
if rng_params != None:
self.init_rng(**rng_params)
elif not hasattr(self, "rng"):
self.init_rng()
self.mcfit_loop_begin_()
self.mcfit_loop1_(num_iter=num_iter, save_fig=save_fig)
self.mcfit_loop_end_()
self.mcfit_analysis_()
self.mcfit_report_final_params()
return self.final_mc_params
# The two routines below gives convenient way to evaluate the
# fitted curve at arbitrary x values (good so long as they are not
# far out from the range given by self.samples_x)
def mcfit_eval_raw(self, x=None, yscale=1.0):
"""Evaluates the curve (y) values for a given set of x value(s).
This routine generates the raw values based on the stochastically
sampled parameter values."""
if x == None:
x = self.samples_x
else:
x = fit_func_base.domain_array(x)
xlen = len(x[0])
mc_curve_y = numpy.empty((len(self.mc_params), xlen))
# The following loop could have been written as a batch operation,
# but it requires some nontrivial change in the convention of how
# fit_func_base.__call__() is written.
# Double broadcasting and other dimensional retrofitting/reduction
# ('dot product'?) may be required.
# Example: in harm_fit_func class, the statement
# xdisp = (x[0] - C[2])
# will have to be changed becasuse the length of x[0]
# (which is the number of data points in the "x" argument)
# and the length of C[2]
# (which is the number of MC iterations)
# will not match--and these numbers must NOT be subtracted elementwise!
for (i,ppp) in enumerate(self.mc_params):
mc_curve_y[i] = self.func(ppp, x)
return mc_curve_y
def mcfit_eval(self, x=None, yscale=1.0, ddof=1, outfmt=0):
"""Evaluates the curve (y) values for a given set of x value(s).
This routine generates the finalized values (with errorbar estimate)
based on the stochastically sampled parameter values."""
# WARNING: CONVENTION CHANGES FROM ORIGINAL make_curve_errorbar() ROUTINE!
# The default delta degree of freedom (ddof) should be 1 because we need
# to take one out for the average itself.
# If you need to reproduce old result, can revert to ddof=0.
if x == None:
x = self.samples_x
else:
x = fit_func_base.domain_array(x)
mc_curve_y = self.mcfit_eval_raw(x=x)
xlen = len(x[0])
final_mc_curve = numpy.empty((xlen,), dtype=[('val',float),('err',float)])
final_mc_curve['val'] = numpy.average(mc_curve_y, axis=0)
final_mc_curve['err'] = numpy.std(mc_curve_y, axis=0, ddof=ddof)
if yscale != 1.0:
final_mc_curve['val'] *= yscale
final_mc_curve['err'] *= yscale
if outfmt == 0:
pass # already in that format
elif outfmt == 1:
# Formatted as an array of "errorbar" objects
final_mc_curve = numpy.array([errorbar(y,dy) for (y,dy) in final_mc_curve], dtype=errorbar)
else:
raise ValueError, "Unsupported outfmt value=%s." % (outfmt)
return final_mc_curve
def mcfit_dump_param_samples(self, out):
"""Dump the generated parameter samples for diagnostic purposes.
"""
O = text_output(out)
pnames = self.mc_params.dtype.names
snames = self.mc_stats.dtype.names
O.write("# %s ; %s ; nfev\n" % (" ".join(pnames), " ".join(snames)))
O.write(matrix_str(array_hstack([ self.mc_params[k] for k in pnames ] + \
[ self.mc_stats[k] for k in snames ] + \
[ self.log_mc_funcalls]),
" %#17.10g")+ "\n")
Loading…
Cancel
Save