My tools of the trade for python programming.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

665 lines
16 KiB

# 20100427
"""
SYMMETRIC ARRAY LAYOUT (LOWER DIAGONAL, FORTRAN COLUMN-MAJOR ORDERING): i >= j
------------------------------------------------------------------------------
CONDITIONS:
1 <= j <= N
1 <= j <= i <= N
----> j
| (1,1)
i | (2,1) (2,2)
v (3,1) (3,2) (3,3)
: : :
(N,1) (N,2) (N,3) ... (N,N)
The linear index goes like this:
1
2 N+1
3 N+2 2N
: : :
N N+N-1
iskip = i - j + 1 (easy)
jskip determination
i jskip jskip
(cumulant) (total)
1 0
2 N
3 N-1
4 N-2
...
j N-(j-2) (j-1)N - (j-2)(j-1)/2
...
Note:
{m}
SUM a = 1 + 2 + ... + m = m(m+1)/2
{a=1}
"""
"""
Update 20120124:
Faster LDdec is possible.
The jskip formula can be written in similar fashion to
the 'UD' array format, as shown below.
The endpoint of the array index is N(N+1)/2 .
The (negative) offset of the j index from the rightmost column is
dj = (N + 1 - j).
Note: dj is 1 on the rightmost column.
So, the jskip is given by:
N(N+1)/2 - (N+1-j)(N+2-j) / 2 =
= [ N**2 + N - ( N**2 + 3N - 2jN + 2 - 3j + j**2 ) ] / 2
= ( -2N + 2jN - 2 + 3j - j**2 ) / 2
= (j-1)N + (j-2)(j-1)/2
>>> the same formula as before.
We can now make a similar analysis as in UD case to make a j_guess
formula:
j_guess = int( N+1 - sqrt((N(N+1)/2 - ij) * 2) )
Note that:
ij = N(N+1)/2 - (N+1-j)(N+2-j)/2 + i-j+1
Now focus on this expression:
xj := ( N(N+1)/2 - ij) * 2
= (N+1-j)*(N+2-j) - 2*(i+1-j)
So the maximum value of xj (for i=j) is:
xj_max = (N+1-j)*(N+2-j) - 2
= (N+1-j)**2 + (N+1-j) - 2
xj_min = (N+1-j)*(N+2-j) - 2*(N+1-j)
= (N+1-j)**2 - (N+1-j)
Again, these values satisfy the inequality
(N-j)**2 < xj_min <= xj_max < (N+2-j)**2
Thus translates to
N-j <= int(sqrt(xj)) <= N+1-j
or
j <= j_guess <= j+1
"""
import numpy
def test_jskip_1(N, M):
jskip1 = 0
jskip2 = 0
for m in xrange(1, M+1):
if m == 1:
cum = 0
else:
cum = N - (m-2)
jskip2 = (m-1)*N - (m-2)*(m-1)/2
jskip1 += cum
print "%5d %5d %5d %5d" % (m, cum, jskip1, jskip2)
def copy_over_array(N, arr_L):
rslt = numpy.zeros((N,N))
for i in xrange(N):
for j in xrange(N):
if j > i: continue
ii = i+1 # Fortranize it
jj = j+1 # Fortranize it
jskip = (jj-1)*N - (jj-2)*(jj-1)/2
iskip = ii - jj + 1
ldiag_index = iskip + jskip - 1 # -1 for C-izing again
# indices printed in Fortran 1-based indices
print "%5d %5d %5d %5d %5d" % (ii,jj,iskip,jskip,ldiag_index+1)
rslt[i,j] = arr_L[ldiag_index]
return rslt
def print_mapping(Map):
keys = sorted(Map.keys())
for K in keys:
(i,j) = K
ij = Map[K]
print("( %4d, %4d ) %8d" % (i,j,ij))
# These are the reference implementation:
def LD_generate_ref_mapping(N):
"""Reference mapping procedure for 'LD' format.
>>> LD_generate_ref_mapping(5)
{(1, 1): 1,
(2, 1): 2,
(2, 2): 6,
(3, 1): 3,
(3, 2): 7,
(3, 3): 10,
(4, 1): 4,
(4, 2): 8,
(4, 3): 11,
(4, 4): 13,
(5, 1): 5,
(5, 2): 9,
(5, 3): 12,
(5, 4): 14,
(5, 5): 15}
"""
mapping = {}
ij = 1
for j in xrange(1, N+1):
for i in xrange(j, N+1):
mapping[(i,j)] = ij
ij += 1
return mapping
def LD(i,j,N):
"""python equivalent of gafqmc_LD on nwchem-gafqmc integral
dumper module.
Translates a lower-diagonal index (ii >= jj) to linear index
0, 1, 2, 3, ...
This follows python convention; thus 0 <= i < N, and so also j.
"""
# iskip is row traversal, jskip is column traversal.
# (iskip+jskip) is the final array index.
if i >= j:
ii = i
jj = j
else:
ii = j
jj = i
iskip = ii - jj # + 1
jskip = (jj)*N - (jj-1)*(jj)//2 # for 0-based
return iskip + jskip
def LD1(i,j,N):
"""python equivalent of gafqmc_LD on nwchem-gafqmc integral
dumper module.
Translates a lower-diagonal index (ii >= jj) to linear index
0, 1, 2, 3, ...
This follows Fortran convention; thus 1 <= i <= N, and so also j.
"""
# iskip is row traversal, jskip is column traversal.
# (iskip+jskip) is the final array index.
if i >= j:
ii = i
jj = j
else:
ii = j
jj = i
iskip = ii - jj + 1
jskip = (jj-1)*N - (jj-2)*(jj-1)//2 # for 1-based
return iskip + jskip
def LDdec(ij, N):
"""Back-translates linear index 0, 1, 2, 3, ... to a lower-diagonal
index pair (ii >= jj).
This is not optimal, but it avoids storing an auxiliary array
that is easily computable. Plus, this function is supposed to
be called rarely.
"""
jskip = 0
for j in xrange(N):
if jskip + (N - j) > ij:
jj = j
ii = ij - jskip + j
return (ii,jj)
jskip += N - j
raise ValueError, "LDdec(ij=%d,N=%d): invalid index ij" % (ij,N)
def LDdec1(ij, N):
"""Back-translates linear index 1, 2, 3, ... to a lower-diagonal
index pair (ii >= jj).
This is not optimal, but it avoids storing an auxiliary array
that is easily computable. Plus, this function is supposed to
be called rarely.
"""
jskip = 0
for j in xrange(1, N+1):
if jskip + (N + 1 - j) >= ij:
jj = j
ii = ij - jskip + j - 1
return (ii,jj)
jskip += (N + 1 - j)
raise ValueError, "LDdec1(ij=%d,N=%d): invalid index ij" % (ij,N)
def LDdec1_v2(ij, N):
"""Version 2, avoiding loop, but adding sqrt() function
"""
from numpy import sqrt
LDsize = N*(N+1) // 2
j = N + 1 - int( sqrt((LDsize - ij) * 2) )
jskip = (j-1)*N - (j-2)*(j-1)//2
if ij > jskip:
pass # correct already
else:
j = j - 1
jskip = (j-1)*N - (j-2)*(j-1)//2
i = ij - jskip + j - 1
return (i,j)
# end reference implementation
def test_LD_enc_dec(N):
"""Simple test to check LD encoding and decoding correctness.
For python-style indexing (0 <= i < N, similarly for j)."""
for i in xrange(N):
for j in xrange(N):
ij = LD(i,j,N)
(ii,jj) = LDdec(ij,N)
print "%3d %3d | %6d | %3d %3d" % (i,j, ij, ii,jj)
def test_LD_enc_dec_diagonal(N):
"""Simple test to check LD encoding and decoding correctness.
For python-style indexing (0 <= i < N, similarly for j).
For diagonal element only
"""
from numpy import sqrt
LDsize = N * (N+1) / 2
for i in xrange(N):
j = i
ij = LD(i,j,N)
(ii,jj) = LDdec(ij,N)
jj2 = int( sqrt(((LDsize) - ij) * 2) )
print "%3d %3d | %6d ( %6d %6d ) | %3d %3d // %3d %3d" % (
i,j,
ij,
ij-LDsize, -2*(ij-LDsize),
ii,jj,
-1, jj2)
# ^^ distance from end of array
def Hack2_LD_enc_dec(N):
"""Simple test to check LD encoding and decoding correctness.
For python-style indexing (0 <= i < N, similarly for j)."""
from numpy import sqrt
LDsize = N * (N+1) / 2
for j in xrange(N):
for i in xrange(j,N):
ij = LD(i,j,N)
(ii,jj) = LDdec(ij,N)
jj2 = ( sqrt(((LDsize) - ij) * 2) )
j_guess = int(N + 1 - jj2) # for some reason this is the one that works for 0-based index
ok1 = (jj <= j_guess)
ok2 = (j_guess <= jj+1)
ok = ((jj <= j_guess) and (j_guess <= jj+1))
#print "%3d %3d | %6d | %3d %3d" % (i,j, ij, ii,jj)
if not ok:
# Verified OK empirically till N=1000.
print "%3d %3d | %6d %6d | %3d %3d // %8.4f %3d %c %d %d" % (
i,j,
ij, (LDsize-ij) * 2,
ii,jj,
jj2, j_guess, ("." if ok else "X"), ok1,ok2)
def Hack3_LD_enc_dec(N, print_all=False):
"""Simple test to check LD encoding and decoding correctness.
For Fortran-style indexing (1 <= i <= N, similarly for j)."""
from numpy import sqrt
LDsize = N * (N+1) / 2
for j in xrange(1,N+1):
for i in xrange(j,N+1):
ij = LD1(i,j,N)
(ii,jj) = LDdec1(ij,N)
(ii,jj) = LDdec1_v2(ij,N)
jj2 = ( sqrt(((LDsize) - ij) * 2) )
j_guess = N + 1 - int(jj2)
OK = (ii==i and jj==j)
ok1 = (jj <= j_guess)
ok2 = (j_guess <= jj+1)
ok = ((jj <= j_guess) and (j_guess <= jj+1))
#print "%3d %3d | %6d | %3d %3d" % (i,j, ij, ii,jj)
if print_all or not (OK and ok):
# Verified OK empirically till N=1000.
print "%3d %3d | %6d %6d | %3d %3d %c // %8.4f %3d %c %d %d" % (
i,j,
ij, (LDsize-ij) * 2,
ii,jj, ("." if OK else "X"),
jj2, j_guess, ("." if ok else "X"), ok1,ok2)
###############################################################################
"""
UPPER DIAGONAL IMPLEMENTATION
CONDITIONS:
1 <= j <= N
1 <= i <= j
j >= i (redundant)
Should be easier (?)
Symmetric array layout (upper diagonal, Fortran column-major ordering):
----> j
| (1,1) (1,2) (1,3) ... (1,N)
i | (2,2) (2,3) ... (2,N)
v (3,3) ... (3,N)
: :
(N,N)
The linear index goes like this:
1 2 4 ... N*(N+1)/2-4
3 5 ... N*(N+1)/2-3
6 ... N*(N+1)/2-2
: N*(N+1)/2-1
N*(N+1)/2
# For 1-based indices:
iskip = i - j (easy)
jskip = j * (j+1) / 2
In the large j limit, jskip is approximately 0.5*j**2 .
This means that the j can be 'guessed' by:
j_guess = int( sqrt(ij * 2) )
= int( sqrt(j * (j + 1) + (i - j)*2) )
= int( sqrt(j**2 + 2*i - j) )
Remember that i <= j, so j_guess ranges from (inclusive endpoints):
j_guess_min = int( sqrt(j**2 - j + 2) )
j_guess_max = int( sqrt(j**2 + j) )
Note: since
sqrt((j-1)**2) = sqrt(j**2 - 2j + 1)
sqrt((j+1)**2) = sqrt(j**2 + 2j + 1)
this means that, for all j > 0,
j_guess_min >= j-1
j_guess_max = j
So only those two j values matter.
Once we get the j, we can get the i value easily.
# For 0-based indices:
iskip = i - j (easy)
jskip = (j+1) * (j+2) / 2 - 1
"""
def UD_generate_ref_mapping(N):
"""Reference mapping procedure for 'UD' format.
>>> UD_generate_ref_mapping(5)
{(1, 1): 1,
(1, 2): 2,
(1, 3): 4,
(1, 4): 7,
(1, 5): 11,
(2, 2): 3,
(2, 3): 5,
(2, 4): 8,
(2, 5): 12,
(3, 3): 6,
(3, 4): 9,
(3, 5): 13,
(4, 4): 10,
(4, 5): 14,
(5, 5): 15}
"""
mapping = {}
ij = 1
for j in xrange(1, N+1):
for i in xrange(1, j+1):
mapping[(i,j)] = ij
ij += 1
return mapping
def UD(i,j,N):
"""Translates a lower-diagonal index (ii <= jj) to linear index
0, 1, 2, 3, ...
This follows python convention; thus 0 <= i < N, and so also j.
"""
# iskip is row traversal, jskip is column traversal.
# (iskip+jskip) is the final array index.
if i <= j:
ii = i
jj = j
else:
ii = j
jj = i
iskip = ii - jj # + 1
jskip = (j+1) * (j+2) // 2 - 1 # for 0-based
return iskip + jskip
def UDdec(ij, N):
"""Back-translates linear index 0, 1, 2, 3, ... to a lower-diagonal
index pair (ii <= jj).
This is not optimal, but it avoids storing an auxiliary array
that is easily computable. Plus, this function is supposed to
be called rarely.
Derived from the 1-based version (UDdec1) below.
"""
jskip = 0
for j in xrange(1,N+1):
jskip = j * (j+1) // 2
if ij < jskip:
i = ij - jskip + j
return (i,j-1)
def UD1(i,j,N):
"""The 1-based version of UD
"""
# iskip is row traversal, jskip is column traversal.
# (iskip+jskip) is the final array index.
if i <= j:
ii = i
jj = j
else:
ii = j
jj = i
iskip = ii - jj
jskip = (j) * (j+1) // 2 # for 1-based
return iskip + jskip
def UDdec1(ij, N):
"""Back-translates linear index 1, 2, 3, ... to a lower-diagonal
index pair (ii <= jj).
This is not optimal, but it avoids storing an auxiliary array
that is easily computable. Plus, this function is supposed to
be called rarely.
"""
jskip = 0
for j in xrange(1,N+1):
jskip = j * (j+1) // 2
if ij < jskip + 1:
"""
ij = iskip + jskip
-> iskip = ij - jskip = i - j
-> i = ij - jskip + j
"""
i = ij - jskip + j
return (i,j)
raise ValueError, "UDdec1(ij=%d,N=%d): invalid index ij" % (ij,N)
def UDdec1_v2(ij, N):
"""Back-translates linear index 1, 2, 3, ... to a lower-diagonal
index pair (ii <= jj).
Version 2, avoiding loop at a cost of doing sqrt() call.
"""
from numpy import sqrt
j = int(sqrt(ij*2+1))
jskip = j * (j+1) // 2
if ij < jskip + 1:
pass # correct already
else:
j = j + 1
jskip = j * (j+1) // 2
i = ij - jskip + j
return (i,j)
def UDdec1_v3(ij, N):
"""Back-translates linear index 1, 2, 3, ... to a lower-diagonal
index pair (ii <= jj).
Version 3, avoiding loop at a cost of doing sqrt() call.
"""
from numpy import sqrt
j = int(sqrt(ij*2)) # +1 not needed?
jskip = j * (j+1) // 2
if ij < jskip + 1:
pass # correct already
else:
j = j + 1
jskip = j * (j+1) // 2
i = ij - jskip + j
return (i,j)
def test_UD_enc_dec(N):
"""Simple test to check UD encoding and decoding correctness.
For python-style indexing (0 <= i < N, similarly for j)."""
# Success for N = 5, 8
for j in xrange(N):
for i in xrange(0,j+1):
ij = UD(i,j,N)
(ii,jj) = UDdec(ij,N)
# print "%3d %3d | %6d | %3d %3d" % (i,j, ij, ii,jj)
print "%3d %3d | %6d | %3d %3d >> %1s" % (i,j, ij, ii,jj, ("v" if i==ii and j==jj else "X"))
def test_UD_enc_dec1(N):
"""Simple test to check UD encoding and decoding correctness.
For python-style indexing (0 <= i < N, similarly for j)."""
for j in xrange(1,N+1):
for i in xrange(1,j+1):
ij = UD1(i,j,N)
(ii,jj) = UDdec1(ij,N)
print "%3d %3d | %6d | %3d %3d >> %1s" % (i,j, ij, ii,jj, ("v" if i==ii and j==jj else "X"))
def hack1_UD_enc_dec1(N):
"""Simple test to check UD encoding and decoding correctness.
For Fortran-style indexing (1 <= i <= N, similarly for j)."""
from numpy import sqrt
ok = True
for j in xrange(1,N+1):
for i in xrange(1,j+1):
ij = UD1(i,j,N)
(ii,jj) = UDdec1(ij,N)
#iii = i
#jjj = int(sqrt(ij*2+1))
#(iii,jjj) = UDdec1_v2(ij,N) # -- tested OK empirically till N=1000
(iii,jjj) = UDdec1_v3(ij,N) # also tested OK empirically till N=1000
if not (i==iii and j==jjj):
ok=False
print "%3d %3d | %6d %6d | %3d %3d : %3d %3d >> %1s" % (
i,j,
ij, ij*2,
ii,jj,
iii, jjj,
("v" if i==iii and j==jjj else "X"))
print ("ok" if ok else "NOT OK")
###############################################################################
"""
SYMMETRIC ARRAY LAYOUT (LOWER DIAGONAL, C ROW-MAJOR ORDERING): i >= j
------------------------------------------------------------------------------
CONDITIONS:
i = 0..N-1
j = 0..i
0 <= i <= N
0 <= j <= i < N
----> j
| (1,1)
i | (2,1) (2,2)
v (3,1) (3,2) (3,3)
: : :
(N,1) (N,2) (N,3) ... (N,N)
The linear index goes like this: (zero-based, per C convention)
0
1 2
3 4 5
: : :
... ... ... ... N*(N+1)/2-1
The pseudocode of i,j -> ij translation goes like
ij = 0
mapping = {}
for i in range(N):
for j in range(i+1):
mapping[(i,j)] = ij
ij += 1
The direct formula is easy:
iskip = i*(i+1)/2
jskip = j
"""
def LDC_generate_ref_mapping(N):
"""Reference mapping procedure for 'LD' C-ordering format.
>>> LDC_generate_ref_mapping(5)
{(0, 0): 0,
(1, 0): 1,
(1, 1): 2,
(2, 0): 3,
(2, 1): 4,
(2, 2): 5,
(3, 0): 6,
(3, 1): 7,
(3, 2): 8,
(3, 3): 9,
(4, 0): 10,
(4, 1): 11,
(4, 2): 12,
(4, 3): 13,
(4, 4): 14}
"""
mapping = {}
ij = 0
for i in xrange(N):
for j in xrange(i+1):
mapping[(i,j)] = ij
ij += 1
return mapping