|
|
|
#
|
|
|
|
# wpylib.math.fitting.linear module
|
|
|
|
# Created: 20121015
|
|
|
|
# Wirawan Purwanto
|
|
|
|
#
|
|
|
|
|
|
|
|
"""
|
|
|
|
wpylib.math.fitting.linear module
|
|
|
|
|
|
|
|
Linear fitting tools.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
from wpylib.math.fitting import fit_result
|
|
|
|
|
|
|
|
def linregr2d_SZ(x, y, sigma=None):
|
|
|
|
"""Performs a linear least square regression to according to a
|
|
|
|
linear model
|
|
|
|
|
|
|
|
y(x) = a + b*x ,
|
|
|
|
|
|
|
|
where the input y has uncertainty given by sigma.
|
|
|
|
"""
|
|
|
|
from numpy import sum, sqrt
|
|
|
|
|
|
|
|
# Based on Shiwei's regr.F code (from email received 20060102).
|
|
|
|
# See Linear-regression.txt in my repository of Shiwei's files.
|
|
|
|
# See also Numerical Recipes in C, 2nd ed, Sec. 15.2.
|
|
|
|
xx = numpy.array(x, copy=False)
|
|
|
|
yy = numpy.array(y, copy=False)
|
|
|
|
if sigma == None:
|
|
|
|
# My addition -- can be dangerous
|
|
|
|
# In case of no errorbar, we proceed as if all measurement
|
|
|
|
# data have the same uncertainty, taken to be 1.
|
|
|
|
ww = numpy.ones_like(y)
|
|
|
|
else:
|
|
|
|
ww = numpy.array(sigma, copy=False)
|
|
|
|
ww **= -2 # make 1/sigma**2 array
|
|
|
|
|
|
|
|
e1 = sum(xx * yy * ww)
|
|
|
|
e2 = sum(yy * ww)
|
|
|
|
d11 = sum(xx * ww)
|
|
|
|
d12 = sum(xx**2 * ww)
|
|
|
|
d21 = sum(ww)
|
|
|
|
d22 = d11
|
|
|
|
|
|
|
|
detinv = 1.0 / (d11*d22 - d12*d21)
|
|
|
|
a = (e1*d22 - e2*d12) * detinv
|
|
|
|
b = (e2*d11 - e1*d21) * detinv
|
|
|
|
|
|
|
|
# Shiwei's old method of computing the uncertainty of the
|
|
|
|
# y-intersect (sigma_a):
|
|
|
|
varsum = sum((xx*d11 - d12)**2 * ww)
|
|
|
|
var = varsum * detinv**2
|
|
|
|
sigma = sqrt(var)
|
|
|
|
|
|
|
|
# New method based on NR chapter: sqrt(sigma_a2) must give
|
|
|
|
# identical result to sigma or else something is screwy!
|
|
|
|
sigma_a2 = d12 * (-detinv)
|
|
|
|
sigma_b2 = d21 * (-detinv)
|
|
|
|
|
|
|
|
#print sigma_a2
|
|
|
|
#print sigma_b2
|
|
|
|
|
|
|
|
return fit_result(
|
|
|
|
fit_method='linregr2d_SZ',
|
|
|
|
fit_model='linear',
|
|
|
|
a=a,
|
|
|
|
b=b,
|
|
|
|
sigma=sigma,
|
|
|
|
sigma_a=sqrt(sigma_a2),
|
|
|
|
sigma_b=sqrt(sigma_b2),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def Test_1():
|
|
|
|
"""Testcase 1.
|
|
|
|
|
|
|
|
>>> wpylib.math.fitting.linear.Test_1()
|
|
|
|
...
|
|
|
|
{'a': -1392.3182324234213,
|
|
|
|
'b': -0.82241012516149792,
|
|
|
|
'fit_method': 'linregr2d_SZ',
|
|
|
|
'fit_model': 'linear',
|
|
|
|
'sigma': 0.00048320905704467775,
|
|
|
|
'sigma_a': 0.00048320905704467786,
|
|
|
|
'sigma_b': 0.080335909573397646}
|
|
|
|
|
|
|
|
My wlinreg tool (via 'dtextrap' shell script alias gives:
|
|
|
|
|
|
|
|
a stats:
|
|
|
|
Total number of data : 100000
|
|
|
|
Average : -1392.32
|
|
|
|
Sample standard deviation: 0.000460341
|
|
|
|
Error of the average : 1.45573e-06 (-1.046e-07%)
|
|
|
|
b stats:
|
|
|
|
Total number of data : 100000
|
|
|
|
Average : -0.822099
|
|
|
|
Sample standard deviation: 0.0803118
|
|
|
|
Error of the average : 0.00025397 (-0.03089%)
|
|
|
|
Summary
|
|
|
|
a = -1392.31823569246 +/- 0.000460341146124978 = -1392.31824(46)
|
|
|
|
b = -0.822098515674071 +/- 0.0803118207916705 = -0.822(80)
|
|
|
|
|
|
|
|
which is close enough for this purpose!
|
|
|
|
"""
|
|
|
|
from wpylib.text_tools import make_matrix as mtx
|
|
|
|
M = mtx("""
|
|
|
|
# Source: Co+ QMC/CAS(8,11)d26 cc-pwCVQZ-DK result dated 20121015
|
|
|
|
0.01 -1392.32619 0.00047
|
|
|
|
0.005 -1392.32284 0.00037
|
|
|
|
0.0025 -1392.31994 0.00038
|
|
|
|
""")
|
|
|
|
x = M[:,0]
|
|
|
|
y = M[:,1]
|
|
|
|
dy = M[:,2]
|
|
|
|
rslt = linregr2d_SZ(x,y,dy)
|
|
|
|
print rslt
|
|
|
|
return rslt
|
|
|
|
|
|
|
|
|
|
|
|
def Test_2():
|
|
|
|
"""Testcase 2.
|
|
|
|
Similar to testcase 1 but with all uncertainties == 1.
|
|
|
|
|
|
|
|
>>> wpylib.math.fitting.linear.Test_2()
|
|
|
|
polyfit result = -0.809999999961 -1392.318265
|
|
|
|
{'a': -1392.3182649999987,
|
|
|
|
'b': -0.81000000006627304,
|
|
|
|
'fit_method': 'linregr2d_SZ',
|
|
|
|
'fit_model': 'linear',
|
|
|
|
'sigma': 1.2247448713915881,
|
|
|
|
'sigma_a': 1.2247448713915885,
|
|
|
|
'sigma_b': 185.16401995451022}
|
|
|
|
|
|
|
|
This is to be compared with the polyfit output.
|
|
|
|
"""
|
|
|
|
from wpylib.text_tools import make_matrix as mtx
|
|
|
|
M = mtx("""
|
|
|
|
# Source: Co+ QMC/CAS(8,11)d26 cc-pwCVQZ-DK result dated 20121015
|
|
|
|
0.01 -1392.32619 1.0
|
|
|
|
0.005 -1392.32284 1.0
|
|
|
|
0.0025 -1392.31994 1.0
|
|
|
|
""")
|
|
|
|
x = M[:,0]
|
|
|
|
y = M[:,1]
|
|
|
|
dy = M[:,2]
|
|
|
|
rslt = linregr2d_SZ(x,y,dy)
|
|
|
|
|
|
|
|
polyfit_result = numpy.polyfit(x,y,deg=1,full=False)
|
|
|
|
print "polyfit result = ", polyfit_result[0], polyfit_result[1]
|
|
|
|
return rslt
|
|
|
|
|
|
|
|
|
|
|
|
def Test_3():
|
|
|
|
"""Testcase 3.
|
|
|
|
Feed of test from 1/x**3 extrapolation, Ca+4H2 Z=2.3 cc-pCV[TQ5]Z basis
|
|
|
|
|
|
|
|
>>> wpylib.math.fitting.linear.Test_3()
|
|
|
|
{'a': -0.92257959784330612,
|
|
|
|
'b': 10.193612525866801,
|
|
|
|
'fit_method': 'linregr2d_SZ',
|
|
|
|
'fit_model': 'linear',
|
|
|
|
'sigma': 0.0010352279401853368,
|
|
|
|
'sigma_a': 0.0010352279401853377,
|
|
|
|
'sigma_b': 0.036555525396641586}
|
|
|
|
|
|
|
|
"""
|
|
|
|
from wpylib.text_tools import make_matrix as mtx
|
|
|
|
M = mtx("""
|
|
|
|
# Source: Co+ QMC/CAS(8,11)d26 cc-pwCVQZ-DK result dated 20121015
|
|
|
|
# Groff notebook 1.90, table "testZ23 geometry: Z=2.3 dHH=0.7682", near
|
|
|
|
# "/// begin extra (for paper)"
|
|
|
|
0.03703704 -0.54533 0.00061
|
|
|
|
0.015625 -0.76167 0.00074
|
|
|
|
0.008 -0.8442 0.0012
|
|
|
|
""")
|
|
|
|
x = M[:,0]
|
|
|
|
y = M[:,1]
|
|
|
|
dy = M[:,2]
|
|
|
|
rslt = linregr2d_SZ(x,y,dy)
|
|
|
|
return rslt
|