|
|
|
# $Id: fitting.py,v 1.4 2011-04-05 19:20:01 wirawan Exp $
|
|
|
|
#
|
|
|
|
# wpylib.math.fitting module
|
|
|
|
# Created: 20100120
|
|
|
|
# Wirawan Purwanto
|
|
|
|
#
|
|
|
|
# Imported 20100120 from $PWQMC77/expt/Hybrid-proj/analyze-Eh.py
|
|
|
|
# (dated 20090323).
|
|
|
|
#
|
|
|
|
# Some references on fitting:
|
|
|
|
# * http://stackoverflow.com/questions/529184/simple-multidimensional-curve-fitting
|
|
|
|
# * http://www.scipy.org/Cookbook/OptimizationDemo1 (not as thorough, but maybe useful)
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
import scipy.optimize
|
|
|
|
from wpylib.db.result_base import result_base
|
|
|
|
|
|
|
|
last_fit_rslt = None
|
|
|
|
last_chi_sqr = None
|
|
|
|
|
|
|
|
class Poly_base(object):
|
|
|
|
"""Typical base class for a function to fit a polynomial. (?)
|
|
|
|
|
|
|
|
The following members must be defined to use the basic features in
|
|
|
|
this class---unless the methods are redefined appropriately:
|
|
|
|
* order = the order (maximum exponent) of the polynomial.
|
|
|
|
* dim = dimensionality of the function domain (i.e. the "x" coordinate).
|
|
|
|
A 2-dimensional (y vs x) fitting will have dim==1.
|
|
|
|
A 3-dimensional (z vs (x,y)) fitting will have dim==2.
|
|
|
|
And so on.
|
|
|
|
"""
|
|
|
|
# Must set the following:
|
|
|
|
# * order = ?
|
|
|
|
# * dim = ?
|
|
|
|
#def __call__(C, x):
|
|
|
|
# raise NotImplementedError, "must implement __call__"
|
|
|
|
def __init__(self, xdata=None, ydata=None, ndim=None):
|
|
|
|
if xdata != None:
|
|
|
|
self.dim = len(xdata)
|
|
|
|
elif ndim != None:
|
|
|
|
self.dim = ndim
|
|
|
|
else:
|
|
|
|
raise ValueError, "Either xdata or ndim argument must be supplied"
|
|
|
|
if ydata: self.guess = [ numpy.mean(ydata) ] + [0.0] * (self.order*self.dim)
|
|
|
|
def Guess(self, ydata):
|
|
|
|
"""The simplest guess: set the parameter for the constant term to <y>, and
|
|
|
|
the rest to zero. In general, this may not be the best."""
|
|
|
|
return [ numpy.mean(ydata) ] + [0.0] * (self.NParams() - 1)
|
|
|
|
def NParams(self):
|
|
|
|
'''Default NParams for polynomial without cross term.'''
|
|
|
|
return 1 + self.order*self.dim
|
|
|
|
|
|
|
|
|
|
|
|
class Poly_order2(Poly_base):
|
|
|
|
"""Multidimensional polynomial of order 2 without cross terms."""
|
|
|
|
order = 2
|
|
|
|
def __call__(self, C, x):
|
|
|
|
return C[0] \
|
|
|
|
+ sum([ C[i*2+1] * x[i] + C[i*2+2] * x[i]**2 \
|
|
|
|
for i in xrange(len(x)) ])
|
|
|
|
|
|
|
|
class Poly_order2_only(Poly_base):
|
|
|
|
"""Multidimensional polynomial of order 2 without cross terms.
|
|
|
|
The linear terms are deleted."""
|
|
|
|
order = 1 # HACK: the linear term is deleted
|
|
|
|
def __call__(self, C, x):
|
|
|
|
return C[0] \
|
|
|
|
+ sum([ C[i+1] * x[i]**2 \
|
|
|
|
for i in xrange(len(x)) ])
|
|
|
|
|
|
|
|
class Poly_order2x_only(Poly_base):
|
|
|
|
'''Multidimensional order-2-only polynomial with all the cross terms.'''
|
|
|
|
order = 2 # but not used
|
|
|
|
def __call__(self, C, x):
|
|
|
|
ndim = self.dim
|
|
|
|
# Reorganize the coeffs in the form of symmetric square matrix
|
|
|
|
# For 4x4 it will become like:
|
|
|
|
# [ 1, 5, 6, 7]
|
|
|
|
# [ 5, 2, 8, 9]
|
|
|
|
# [ 6, 8, 3, 10]
|
|
|
|
# [ 7, 9, 10, 4]
|
|
|
|
Cmat = numpy.diag(C[1:ndim+1])
|
|
|
|
j = ndim+1
|
|
|
|
for r in xrange(0, ndim-1):
|
|
|
|
jnew = j + ndim - 1 - r
|
|
|
|
Cmat[r, r+1:] = C[j:jnew]
|
|
|
|
Cmat[r+1:, r] = C[j:jnew]
|
|
|
|
j = jnew
|
|
|
|
#print Cmat
|
|
|
|
#print x
|
|
|
|
nrec = len(x[0]) # assume a 2-D array
|
|
|
|
rslt = numpy.empty((nrec,), dtype=numpy.float64)
|
|
|
|
for r in xrange(nrec):
|
|
|
|
rslt[r] = C[0] \
|
|
|
|
+ numpy.sum( Cmat * numpy.outer(x[:,r], x[:,r]) )
|
|
|
|
return rslt
|
|
|
|
|
|
|
|
def NParams(self):
|
|
|
|
# 1 is for the constant term
|
|
|
|
return 1 + self.dim * (self.dim + 1) / 2
|
|
|
|
|
|
|
|
class Poly_order3(Poly_base):
|
|
|
|
"""Multidimensional polynomial of order 3 without cross terms.
|
|
|
|
The linear terms are deleted."""
|
|
|
|
order = 3
|
|
|
|
def __call__(self, C, x):
|
|
|
|
return C[0] \
|
|
|
|
+ sum([ C[i*3+1] * x[i] + C[i*3+2] * x[i]**2 + C[i*3+3] * x[i]**3 \
|
|
|
|
for i in xrange(len(x)) ])
|
|
|
|
|
|
|
|
class Poly_order4(Poly_base):
|
|
|
|
"""Multidimensional polynomial of order 4 without cross terms.
|
|
|
|
The linear terms are deleted."""
|
|
|
|
order = 4
|
|
|
|
def __call__(self, C, x):
|
|
|
|
return C[0] \
|
|
|
|
+ sum([ C[i*4+1] * x[i] + C[i*4+2] * x[i]**2 + C[i*4+3] * x[i]**3 + C[i*4+4] * x[i]**4 \
|
|
|
|
for i in xrange(len(x)) ])
|
|
|
|
|
|
|
|
|
|
|
|
class fit_result(result_base):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def fit_func(Funct, Data=None, Guess=None,
|
|
|
|
x=None, y=None,
|
|
|
|
w=None, dy=None,
|
|
|
|
debug=0,
|
|
|
|
outfmt=1,
|
|
|
|
Funct_hook=None,
|
|
|
|
method='leastsq', opts={}):
|
|
|
|
"""
|
|
|
|
Performs a function fitting.
|
|
|
|
The domain of the function is a D-dimensional vector, and the function
|
|
|
|
yields a scalar.
|
|
|
|
|
|
|
|
Funct is a python function (or any callable object) with argument list of
|
|
|
|
(C, x), where:
|
|
|
|
* C is the cofficients (parameters) being adjusted by the fitting process
|
|
|
|
(it is a sequence or a 1-D array)
|
|
|
|
* x is a 2-D array (or sequence of like nature), say,
|
|
|
|
of size "N rows times M columns".
|
|
|
|
N is the dimensionality of the domain, while
|
|
|
|
M is the number of data points, whose count must be equal to the
|
|
|
|
size of y data below.
|
|
|
|
For a 2-D fitting, for example, x should be a column array.
|
|
|
|
|
|
|
|
The "y" array is a 1-D array of length M, which contain the "measured"
|
|
|
|
value of the function at every domain point given in "x".
|
|
|
|
|
|
|
|
The "w" or "dy" array (only one of them can be specified in a call),
|
|
|
|
if given, specifies either the weight or standard error of the y data.
|
|
|
|
If "dy" is specified, then "w" is defined to be (1.0 / dy**2), per usual
|
|
|
|
convention.
|
|
|
|
|
|
|
|
Inspect Poly_base, Poly_order2, and other similar function classes in this
|
|
|
|
module to see the example of the Funct function.
|
|
|
|
|
|
|
|
The measurement (input) datasets, against which the function is to be fitted,
|
|
|
|
can be specified in one of two ways:
|
|
|
|
* via x and y arguments. x is a multi-column dataset, where each row is the
|
|
|
|
(multidimensional) coordinate of the Funct's domain.
|
|
|
|
y is a one-dimensional dataset.
|
|
|
|
Or,
|
|
|
|
* via Data argument (which is a multi-column dataset, where the first row
|
|
|
|
is the "y" argument).
|
|
|
|
|
|
|
|
Debugging and other investigations can be done with "Funct_hook", which,
|
|
|
|
if defined, will be called every time right after "Funct" is called.
|
|
|
|
It is called with the following signature:
|
|
|
|
Funct_hook(C, x, y, f, r)
|
|
|
|
where
|
|
|
|
f := f(C,x)
|
|
|
|
r := f(C,x) - y
|
|
|
|
Note that the reference to the hook object is passed as the first argument
|
|
|
|
to facilitate object oriented programming.
|
|
|
|
"""
|
|
|
|
global last_fit_rslt, last_chi_sqr
|
|
|
|
from scipy.optimize import fmin, fmin_bfgs, leastsq, anneal
|
|
|
|
# We want to minimize this error:
|
|
|
|
if Data != None: # an alternative way to specifying x and y
|
|
|
|
y = Data[0]
|
|
|
|
x = Data[1:] # possibly multidimensional!
|
|
|
|
|
|
|
|
if debug >= 10:
|
|
|
|
print "Dimensionality of the domain is: ", len(x)
|
|
|
|
|
|
|
|
if Guess != None:
|
|
|
|
pass
|
|
|
|
elif hasattr(Funct, "Guess_xy"):
|
|
|
|
# Try to provide an initial guess
|
|
|
|
Guess = Funct.Guess_xy(x, y)
|
|
|
|
elif hasattr(Funct, "Guess"):
|
|
|
|
# Try to provide an initial guess
|
|
|
|
# This is an older version with y-only argument
|
|
|
|
Guess = Funct.Guess(y)
|
|
|
|
elif Guess == None: # VERY OLD, DO NOT USE ANYMORE!
|
|
|
|
Guess = [ y.mean() ] + [0.0, 0.0] * len(x)
|
|
|
|
|
|
|
|
if debug >= 5:
|
|
|
|
print "Guess params:"
|
|
|
|
print Guess
|
|
|
|
|
|
|
|
if Funct_hook != None:
|
|
|
|
if not hasattr(Funct_hook, "__call__"):
|
|
|
|
raise TypeError, "Funct_hook argument must be a callable function."
|
|
|
|
def fun_err(CC, xx, yy, ww):
|
|
|
|
"""Computes the error of the fitted functional against the
|
|
|
|
reference data points:
|
|
|
|
|
|
|
|
* CC = current function parameters
|
|
|
|
* xx = domain points of the ("experimental") data
|
|
|
|
* yy = target points of the ("experimental") data
|
|
|
|
* ww = weights of the ("experimental") data
|
|
|
|
"""
|
|
|
|
ff = Funct(CC,xx)
|
|
|
|
r = (ff - yy) * ww
|
|
|
|
Funct_hook(CC, xx, yy, ff, r)
|
|
|
|
return r
|
|
|
|
elif debug < 20:
|
|
|
|
def fun_err(CC, xx, yy, ww):
|
|
|
|
ff = Funct(CC,xx)
|
|
|
|
r = (ff - yy) * ww
|
|
|
|
return r
|
|
|
|
else:
|
|
|
|
def fun_err(CC, xx, yy, ww):
|
|
|
|
ff = Funct(CC,xx)
|
|
|
|
r = (ff - yy) * ww
|
|
|
|
print " err: %s << %s << %s, %s, %s" % (r, ff, CC, xx, ww)
|
|
|
|
return r
|
|
|
|
|
|
|
|
fun_err2 = lambda CC, xx, yy, ww: numpy.sum(abs(fun_err(CC, xx, yy, ww))**2)
|
|
|
|
|
|
|
|
if w != None and dy != None:
|
|
|
|
raise TypeError, "Only one of w or dy can be specified."
|
|
|
|
if dy != None:
|
|
|
|
sqrtw = 1.0 / dy
|
|
|
|
elif w != None:
|
|
|
|
sqrtw = numpy.sqrt(w)
|
|
|
|
else:
|
|
|
|
sqrtw = 1.0
|
|
|
|
|
|
|
|
# Full result is stored in rec
|
|
|
|
rec = fit_result()
|
|
|
|
extra_keys = {}
|
|
|
|
if method == 'leastsq':
|
|
|
|
# modified Levenberg-Marquardt algorithm
|
|
|
|
rslt = leastsq(fun_err,
|
|
|
|
x0=Guess, # initial coefficient guess
|
|
|
|
args=(x,y,sqrtw), # data onto which the function is fitted
|
|
|
|
full_output=1,
|
|
|
|
**opts
|
|
|
|
)
|
|
|
|
keys = ('xopt', 'cov_x', 'infodict', 'mesg', 'ier') # ier = error message code from MINPACK
|
|
|
|
extra_keys = {
|
|
|
|
# map the output values to the same keyword as other methods below:
|
|
|
|
'funcalls': (lambda : rslt[2]['nfev']),
|
|
|
|
}
|
|
|
|
# Added estimate of fit parameter uncertainty (matching GNUPLOT parameter
|
|
|
|
# uncertainty.
|
|
|
|
# The error is estimated to be the diagonal of cov_x, multiplied by the WSSR
|
|
|
|
# (chi_square below) and divided by the number of fit degrees of freedom.
|
|
|
|
# I used newer scipy.optimize.curve_fit() routine as my cheat sheet here.
|
|
|
|
if outfmt == 0:
|
|
|
|
if rslt[1] != None and len(y) > len(rslt[0]):
|
|
|
|
NDF = len(y) - len(rslt[0])
|
|
|
|
extra_keys['xerr'] = (lambda:
|
|
|
|
numpy.sqrt(numpy.diagonal(rslt[1]) * rec['chi_square'] / NDF)
|
|
|
|
)
|
|
|
|
elif method == 'fmin':
|
|
|
|
# Nelder-Mead Simplex algorithm
|
|
|
|
rslt = fmin(fun_err2,
|
|
|
|
x0=Guess, # initial coefficient guess
|
|
|
|
args=(x,y,sqrtw), # data onto which the function is fitted
|
|
|
|
full_output=1,
|
|
|
|
**opts
|
|
|
|
)
|
|
|
|
keys = ('xopt', 'fopt', 'iter', 'funcalls', 'warnflag', 'allvecs')
|
|
|
|
elif method == 'fmin_bfgs' or method == 'bfgs':
|
|
|
|
# Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
|
|
|
|
rslt = fmin_bfgs(fun_err2,
|
|
|
|
x0=Guess, # initial coefficient guess
|
|
|
|
args=(x,y,sqrtw), # data onto which the function is fitted
|
|
|
|
full_output=1,
|
|
|
|
**opts
|
|
|
|
)
|
|
|
|
keys = ('xopt', 'fopt', 'funcalls', 'gradcalls', 'warnflag', 'allvecs')
|
|
|
|
elif method == 'anneal':
|
|
|
|
rslt = anneal(fun_err2,
|
|
|
|
x0=Guess, # initial coefficient guess
|
|
|
|
args=(x,y,sqrtw), # data onto which the function is fitted
|
|
|
|
full_output=1,
|
|
|
|
**opts
|
|
|
|
)
|
|
|
|
keys = ('xopt', 'fopt', 'T', 'funcalls', 'iter', 'accept', 'retval')
|
|
|
|
else:
|
|
|
|
raise ValueError, "Unsupported minimization method: %s" % method
|
|
|
|
chi_sqr = fun_err2(rslt[0], x, y, sqrtw)
|
|
|
|
last_chi_sqr = chi_sqr
|
|
|
|
last_fit_rslt = rslt
|
|
|
|
if (debug >= 10):
|
|
|
|
#print "Fit-message: ", rslt[]
|
|
|
|
print "Fit-result:"
|
|
|
|
print "\n".join([ "%2d %s" % (ii, rslt[ii]) for ii in xrange(len(rslt)) ])
|
|
|
|
if debug >= 1:
|
|
|
|
print "params = ", rslt[0]
|
|
|
|
print "chi square = ", last_chi_sqr / len(y)
|
|
|
|
if outfmt == 0: # outfmt == 0 -- full result.
|
|
|
|
rec.update(dict(zip(keys, rslt)))
|
|
|
|
rec['chi_square'] = chi_sqr
|
|
|
|
rec['fit_method'] = method
|
|
|
|
# If there are extra keys, record them here:
|
|
|
|
for (k,v) in extra_keys.iteritems():
|
|
|
|
rec[k] = v()
|
|
|
|
return rec
|
|
|
|
elif outfmt == 1:
|
|
|
|
return rslt[0]
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
x = str(outfmt)
|
|
|
|
except:
|
|
|
|
x = "(?)"
|
|
|
|
raise ValueError, "Invalid `outfmt' argument = " + x
|