|
|
|
#
|
|
|
|
# wpylib.math.fitting.funcs_simple module
|
|
|
|
# Created: 20150520
|
|
|
|
# Wirawan Purwanto
|
|
|
|
#
|
|
|
|
# Imported 20150520 from Cr2_analysis_cbs.py
|
|
|
|
# (dated 20141017, CVS rev 1.143).
|
|
|
|
#
|
|
|
|
|
|
|
|
"""
|
|
|
|
wpylib.math.fitting.funcs_simple module
|
|
|
|
A library of simple f(x) functions for fitting
|
|
|
|
|
|
|
|
For use with OO-style x-y curve fitting interface.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
from wpylib.math.fitting import fit_func_base
|
|
|
|
|
|
|
|
|
|
|
|
# Some simple function fitting--to aid fitting the complex ones later
|
|
|
|
|
|
|
|
def fit_linear(x, y):
|
|
|
|
"""Warning: the ansatz for fitting is
|
|
|
|
C[0] + C[1]*x
|
|
|
|
so I have to reverse the order of fit parameters.
|
|
|
|
"""
|
|
|
|
rslt = numpy.polyfit(x, y, 1, full=True)
|
|
|
|
return (rslt[0][::-1],) + rslt
|
|
|
|
|
|
|
|
|
|
|
|
def fit_harm(x, y):
|
|
|
|
"""Do a quadratic fit using poly fit and return it in terms of coeffs
|
|
|
|
like this one:
|
|
|
|
|
|
|
|
C0 + 0.5 * C1 * (x - C2)**2
|
|
|
|
|
|
|
|
=> 0.5*C1*x**2 - C1*C2*x + (C0 + 0.5 * C1 * C2**2)
|
|
|
|
|
|
|
|
Polyfit gives:
|
|
|
|
a * x**2 + b * x + c
|
|
|
|
|
|
|
|
Equating the two, we get:
|
|
|
|
|
|
|
|
C1 = 2 * a
|
|
|
|
C2 = -b/C1
|
|
|
|
C0 = c - 0.5*C1*C2**2
|
|
|
|
|
|
|
|
This function returns the recast parameters plus the original
|
|
|
|
fit output.
|
|
|
|
"""
|
|
|
|
rslt = numpy.polyfit(x, y, 2, full=True)
|
|
|
|
|
|
|
|
(a,b,c) = rslt[0]
|
|
|
|
C1 = 2*a
|
|
|
|
C2 = -b/C1
|
|
|
|
C0 = c - 0.5*C1*C2**2
|
|
|
|
|
|
|
|
return ((C0,C1,C2),) + rslt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# fit_func-style functional ansatz
|
|
|
|
|
|
|
|
class const_fit_func(fit_func_base):
|
|
|
|
"""Constant function object.
|
|
|
|
For use with fit_func function on a PEC.
|
|
|
|
|
|
|
|
Functional form:
|
|
|
|
|
|
|
|
C[0]
|
|
|
|
|
|
|
|
Coefficients:
|
|
|
|
* C[0] = the constant sought
|
|
|
|
"""
|
|
|
|
dim = 1 # a function with 1-D domain
|
|
|
|
param_names = ('c')
|
|
|
|
def __call__(self, C, x):
|
|
|
|
from numpy import exp
|
|
|
|
y = C[0]
|
|
|
|
self.func_call_hook(C, x, y)
|
|
|
|
return y
|
|
|
|
def Guess_xy(self, x, y):
|
|
|
|
self.guess_params = (numpy.average(y),)
|
|
|
|
return self.guess_params
|
|
|
|
|
|
|
|
|
|
|
|
class linear_fit_func(fit_func_base):
|
|
|
|
"""Linear function object.
|
|
|
|
For use with fit_func function.
|
|
|
|
|
|
|
|
Functional form:
|
|
|
|
|
|
|
|
a + b * x
|
|
|
|
|
|
|
|
Coefficients:
|
|
|
|
* C[0] = a
|
|
|
|
* C[1] = b
|
|
|
|
"""
|
|
|
|
dim = 1 # a function with 1-D domain
|
|
|
|
param_names = ('a', 'b')
|
|
|
|
def __call__(self, C, x):
|
|
|
|
y = C[0] + C[1] * x[0]
|
|
|
|
self.func_call_hook(C, x, y)
|
|
|
|
return y
|
|
|
|
def Guess_xy(self, x, y):
|
|
|
|
fit_rslt = fit_linear(x[0], y)
|
|
|
|
self.guess_params = tuple(fit_rslt[0])
|
|
|
|
return self.guess_params
|
|
|
|
|
|
|
|
|
|
|
|
class linear_leastsq_fit_func(linear_fit_func):
|
|
|
|
def fit(self, x, y, dy=None, fit_opts=None, Funct_hook=None, Guess=None):
|
|
|
|
from wpylib.math.fitting.linear import linregr2d_SZ
|
|
|
|
# Changed from:
|
|
|
|
# rslt = fit_linear_weighted(x,y,dy)
|
|
|
|
# to:
|
|
|
|
rslt = linregr2d_SZ(x, y, sigma=dy)
|
|
|
|
|
|
|
|
self.last_fit = rslt[1]
|
|
|
|
# Retrofit for API compatibility: not necessarily meaningful
|
|
|
|
self.guess_params = rslt[0]
|
|
|
|
return rslt[0]
|
|
|
|
|
|
|
|
|
|
|
|
class exp_fit_func(fit_func_base):
|
|
|
|
"""Exponential function object.
|
|
|
|
For use with fit_func function.
|
|
|
|
|
|
|
|
Functional form:
|
|
|
|
|
|
|
|
C[0] * (exp(C[1] * (x - C[2]))
|
|
|
|
|
|
|
|
Coefficients:
|
|
|
|
* C[0] = amplitude
|
|
|
|
* C[1] = damping factor
|
|
|
|
* C[2] = offset
|
|
|
|
"""
|
|
|
|
dim = 1 # a function with 1-D domain
|
|
|
|
param_names = ['A', 'B', 'x0']
|
|
|
|
# FIXME: AD HOC PARAMETERS!
|
|
|
|
A_guess = -2.62681
|
|
|
|
B_guess = -9.05046
|
|
|
|
x0_guess = 1.57327
|
|
|
|
def __call__(self, C, x):
|
|
|
|
from numpy import exp
|
|
|
|
A, B, x0 = self.get_params(C, *(self.param_names))
|
|
|
|
y = A * exp(B * (x[0] - x0))
|
|
|
|
self.func_call_hook(C, x, y)
|
|
|
|
return y
|
|
|
|
def Guess_xy(self, x, y):
|
|
|
|
from numpy import abs
|
|
|
|
#y_abs = abs(y)
|
|
|
|
# can do linear fit to guess the params,
|
|
|
|
# but how to separate A and B*x0, I don't know.
|
|
|
|
#imin = numpy.argmin(y)
|
|
|
|
self.guess_params = (self.A_guess, self.B_guess, self.x0_guess)
|
|
|
|
return self.guess_params
|
|
|
|
|
|
|
|
|
|
|
|
class expm_fit_func(exp_fit_func):
|
|
|
|
"""Similar to exp_fit_func but the exponent is always negative.
|
|
|
|
"""
|
|
|
|
def __call__(self, C, x):
|
|
|
|
from numpy import exp,abs
|
|
|
|
A, B, x0 = self.get_params(C, *(self.param_names))
|
|
|
|
y = A * exp(-abs(B) * (x[0] - x0))
|
|
|
|
self.func_call_hook(C, x, y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class powx_fit_func(fit_func_base):
|
|
|
|
"""Power of x function object.
|
|
|
|
For use with fit_func function.
|
|
|
|
|
|
|
|
Functional form:
|
|
|
|
|
|
|
|
C[0] * ((x - C[2])**C[1])
|
|
|
|
|
|
|
|
Coefficients:
|
|
|
|
* C[0] = amplitude
|
|
|
|
* C[1] = exponent (< 0)
|
|
|
|
* C[2] = offset
|
|
|
|
"""
|
|
|
|
dim = 1 # a function with 1-D domain
|
|
|
|
param_names = ['A', 'B', 'x0']
|
|
|
|
# FIXME: AD HOC PARAMETERS!
|
|
|
|
A_guess = -2.62681
|
|
|
|
B_guess = -9.05046
|
|
|
|
x0_guess = 1.57327
|
|
|
|
def __call__(self, C, x):
|
|
|
|
from numpy import exp
|
|
|
|
A, B, x0 = self.get_params(C, *(self.param_names))
|
|
|
|
y = A * (x[0] - x0)**B
|
|
|
|
self.func_call_hook(C, x, y)
|
|
|
|
return y
|
|
|
|
def Guess_xy(self, x, y):
|
|
|
|
from numpy import abs
|
|
|
|
#y_abs = abs(y)
|
|
|
|
# can do linear fit to guess the params,
|
|
|
|
# but how to separate A and B*x0, I don't know.
|
|
|
|
#imin = numpy.argmin(y)
|
|
|
|
self.guess_params = (self.A_guess, self.B_guess, self.x0_guess)
|
|
|
|
return self.guess_params
|
|
|
|
|
|
|
|
|
|
|
|
class invx_fit_func(powx_fit_func):
|
|
|
|
"""Inverse of x function object that leads to 0 as x->infinity.
|
|
|
|
For use with fit_func function.
|
|
|
|
|
|
|
|
Functional form:
|
|
|
|
|
|
|
|
C[0] * ((x - C[2])**C[1])
|
|
|
|
|
|
|
|
Specialized for CBX1 extrapolation
|
|
|
|
Coefficients:
|
|
|
|
* C[0] = amplitude (< 0)
|
|
|
|
* C[1] = exponent (< 0)
|
|
|
|
* C[2] = offset (> 0)
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
/home/wirawan/Work/GAFQMC/expt/qmc/Cr2/CBS-TZ-QZ/UHF-CBS/20140128/Exp-CBX1.d/fit-invx.plt
|
|
|
|
|
|
|
|
Iteration 154
|
|
|
|
WSSR : 0.875715 delta(WSSR)/WSSR : -9.96404e-06
|
|
|
|
delta(WSSR) : -8.72566e-06 limit for stopping : 1e-05
|
|
|
|
lambda : 0.00174063
|
|
|
|
|
|
|
|
resultant parameter values
|
|
|
|
|
|
|
|
A = -29.7924
|
|
|
|
B = -13.2967
|
|
|
|
x0 = 0.399396
|
|
|
|
|
|
|
|
After 154 iterations the fit converged.
|
|
|
|
final sum of squares of residuals : 0.875715
|
|
|
|
rel. change during last iteration : -9.96404e-06
|
|
|
|
|
|
|
|
degrees of freedom (FIT_NDF) : 2
|
|
|
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.661708
|
|
|
|
variance of residuals (reduced chisquare) = WSSR/ndf : 0.437858
|
|
|
|
|
|
|
|
Final set of parameters Asymptotic Standard Error
|
|
|
|
======================= ==========================
|
|
|
|
|
|
|
|
A = -29.7924 +/- 8027 (2.694e+04%)
|
|
|
|
B = -13.2967 +/- 196.1 (1474%)
|
|
|
|
x0 = 0.399396 +/- 21.4 (5357%)
|
|
|
|
|
|
|
|
|
|
|
|
correlation matrix of the fit parameters:
|
|
|
|
|
|
|
|
A B x0
|
|
|
|
A 1.000
|
|
|
|
B 1.000 1.000
|
|
|
|
x0 1.000 1.000 1.000
|
|
|
|
|
|
|
|
For some reason the fit code in python gives:
|
|
|
|
A,B,x0 = (-7028.1498486021028, -16.916447508009664, 2.2572321406455487e-06)
|
|
|
|
but they fit almost exactly the same in the region 1.8 <= r <= 3.0.
|
|
|
|
|
|
|
|
"""
|
|
|
|
A_guess = -29.7924
|
|
|
|
B_guess = -13.2967
|
|
|
|
x0_guess = 0.399396
|
|
|
|
def __init__(self):
|
|
|
|
from lmfit import Parameters
|
|
|
|
self.fit_method = "lmfit:leastsq"
|
|
|
|
p = Parameters()
|
|
|
|
p.add_many(
|
|
|
|
# (Name, Value, Vary, Min, Max, Expr)
|
|
|
|
('A', -2.6, True, -1e6, -1e-9, None),
|
|
|
|
('B', -2.0, True, None, -1e-9, None),
|
|
|
|
('x0', 1.9, True, 1e-6, None, None),
|
|
|
|
# The values are just a placeholder. They will be set later.
|
|
|
|
)
|
|
|
|
self.Params = p
|
|
|
|
|
|
|
|
|