|
|
|
#!/usr/bin/ipython -pylab
|
|
|
|
#
|
|
|
|
# $Id: sugar.py,v 1.9 2011-03-10 20:16:58 wirawan Exp $
|
|
|
|
#
|
|
|
|
# Created: 20100121
|
|
|
|
# Wirawan Purwanto
|
|
|
|
#
|
|
|
|
# Syntactic sugar for python programming. May not be efficient, but many
|
|
|
|
# of these tools are nice for quick-and-dirty programming.
|
|
|
|
# Beware of their caveats!
|
|
|
|
#
|
|
|
|
#
|
|
|
|
import sys
|
|
|
|
import weakref
|
|
|
|
|
|
|
|
def is_iterable(x):
|
|
|
|
"""Checks if an object x is iterable.
|
|
|
|
It checks only for the presence of __iter__, which must exist for
|
|
|
|
container objects.
|
|
|
|
Note: we do not consider non-containers such as string and unicode as
|
|
|
|
`iterable'; this behavior is intended.
|
|
|
|
"""
|
|
|
|
return hasattr(x, "__iter__")
|
|
|
|
|
|
|
|
def ifelse(cond, trueval, *args):
|
|
|
|
"""An alternative to python's own ternary operator, but with multiple
|
|
|
|
conditions to test (like chained if-else-if-else... which is found in
|
|
|
|
e.g. m4 language).
|
|
|
|
This is of course only a syntactic sugar with its inefficiency and
|
|
|
|
dangers (all expressions are evaluated before choosing which one is to
|
|
|
|
select). So, beware!"""
|
|
|
|
if cond:
|
|
|
|
return trueval
|
|
|
|
else:
|
|
|
|
i = 0
|
|
|
|
while i+1 < len(args):
|
|
|
|
if args[i]: return args[i+1]
|
|
|
|
i += 2
|
|
|
|
|
|
|
|
if i < len(args): return args[i]
|
|
|
|
|
|
|
|
return None # Fallback solution: "None"
|
|
|
|
|
|
|
|
|
|
|
|
if sys.version_info < (2,4):
|
|
|
|
def sorted(List):
|
|
|
|
rslt = [ L for L in List ] # == L.copy()
|
|
|
|
rslt.sort()
|
|
|
|
return rslt
|
|
|
|
else:
|
|
|
|
#print dir(globals())
|
|
|
|
sorted = sorted
|
|
|
|
|
|
|
|
#print dir(globals())
|
|
|
|
|
|
|
|
def dict_slice(Dict, *keys):
|
|
|
|
"""Returns a shallow copy of the subset of a given dict (or a dict-like
|
|
|
|
object) with a given set of keys.
|
|
|
|
The return object is a dict.
|
|
|
|
No keys may be missing from Dict.
|
|
|
|
|
|
|
|
Example: if d = {'abc': 12, 'def': 7, 'ghi': 32, 'jkl': 98 }
|
|
|
|
then dict_slice(d, 'abc', 'ghi') will yield {'abc': 12, 'ghi': 32 }
|
|
|
|
"""
|
|
|
|
return dict([ (k, Dict[k]) for k in keys ])
|
|
|
|
|
|
|
|
def dict_islice(Dict, *keys):
|
|
|
|
"""Returns a shallow copy of the subset of a given dict (or an otherwise
|
|
|
|
hashable object) with a given set of keys.
|
|
|
|
The return object is a dict.
|
|
|
|
This is similar to dict_slice, except that missing keys in
|
|
|
|
Dict will be ignored.
|
|
|
|
"""
|
|
|
|
# This is fancy but we require Dict to have keys() function:
|
|
|
|
#return dict([ (k, Dict[k]) for k in (set(keys) & set(Dict.keys())) ])
|
|
|
|
# use this one instead, which is milder requirement:
|
|
|
|
return dict([ (k, Dict[k]) for k in keys if (k in Dict) ])
|
|
|
|
|
|
|
|
def dict_join(*dicts):
|
|
|
|
"""Join multiple dicts into one, updating duplicate keys from left-to-right
|
|
|
|
manner.
|
|
|
|
Thus the items from the rightmost dict will take precedence."""
|
|
|
|
|
|
|
|
rslt = {}
|
|
|
|
for d in dicts:
|
|
|
|
rslt.update(d)
|
|
|
|
return rslt
|
|
|
|
|
|
|
|
def list_join(*L):
|
|
|
|
r = []
|
|
|
|
for i in L:
|
|
|
|
r += i
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
def zip_gen(*L):
|
|
|
|
"""Generator version of the built-in zip() function.
|
|
|
|
Used so that the all the loop iterations are not invoked before
|
|
|
|
the main `for' statement is invoked (e.g. if memory is a concern
|
|
|
|
when generating the list--this method does not generate any list).
|
|
|
|
Performance could be slightly slower than the original zip function,
|
|
|
|
though."""
|
|
|
|
L_iters = [ i.__iter__() for i in L ]
|
|
|
|
while True:
|
|
|
|
yield tuple([ L1.next() for L1 in L_iters ])
|
|
|
|
|
|
|
|
|
|
|
|
class ranges_type:
|
|
|
|
"""This class is to provide dirty magic to specify piecewice slices
|
|
|
|
of one-dimensional ranges.
|
|
|
|
To this end, use the `ranges' instance already defined in this module.
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> ranges[1]
|
|
|
|
[1]
|
|
|
|
|
|
|
|
>>> ranges[1, 4, 7, 9]
|
|
|
|
[1, 4, 7, 9]
|
|
|
|
|
|
|
|
>>> ranges[1:7, 9:11]
|
|
|
|
[1, 2, 3, 4, 5, 6, 9, 10]
|
|
|
|
|
|
|
|
>>> rr[1,4,7,9,[2,3,2]] # it even works like this!
|
|
|
|
[1, 4, 7, 9, 2, 3, 2]
|
|
|
|
|
|
|
|
The key is, anything 1-D will be flattened out. So be careful.
|
|
|
|
Slices must have defined starting and ending points.
|
|
|
|
Undefined step will be reinterpreted as unit incremental step.
|
|
|
|
As always: endpoints are not included when using the slicing syntax.
|
|
|
|
"""
|
|
|
|
def expand_range(self, rr):
|
|
|
|
pass
|
|
|
|
def __getitem__(self, rr):
|
|
|
|
if "__iter__" in dir(rr):
|
|
|
|
return list_join(*[ self[r] for r in rr ])
|
|
|
|
elif isinstance(rr, slice):
|
|
|
|
if rr.step == None:
|
|
|
|
step = 1
|
|
|
|
else:
|
|
|
|
step = rr.step
|
|
|
|
return range(rr.start, rr.stop, step)
|
|
|
|
else:
|
|
|
|
return [rr]
|
|
|
|
|
|
|
|
ranges = ranges_type()
|
|
|
|
|
|
|
|
|
|
|
|
class Parameters(dict):
|
|
|
|
"""A standardized way to define and/or pass parameters (with possible
|
|
|
|
default values) among routines.
|
|
|
|
This provides a very flexible lookup scheme for a parameter with a given name.
|
|
|
|
It scans through the namescopes (dicts) in a deterministic and sequential
|
|
|
|
order, returning the first one found.
|
|
|
|
This, hopefully, gets rid of kitchen-sink parameter passing, at least from
|
|
|
|
programmer's point of view.
|
|
|
|
|
|
|
|
WARNING: This object is derived from python dict with ALL method names removed,
|
|
|
|
so as to avoid collosion of these names with user-defined parameters with the
|
|
|
|
same name.
|
|
|
|
Names reserved by this class begin and end with an underscore.
|
|
|
|
Names reserved by python begin and end with two underscores.
|
|
|
|
So, avoid specifying parameters with both leading and trailing underscores.
|
|
|
|
WARNING: Be careful modifying this class; endless recursive calls are
|
|
|
|
possible.
|
|
|
|
|
|
|
|
|
|
|
|
Some uses:
|
|
|
|
|
|
|
|
def stuff(params=None, **kwparams):
|
|
|
|
# `params' defines the standard way of passing parameters, which is
|
|
|
|
# via a Parameters object.
|
|
|
|
# `kwparams' determine a quick way of temporarily overriding a parameter
|
|
|
|
# value.
|
|
|
|
prm = Parameters(kwparams, params, global_defaults)
|
|
|
|
for step in prm.steps:
|
|
|
|
...
|
|
|
|
|
|
|
|
Parameters can also be updated in this way:
|
|
|
|
|
|
|
|
a = Parameters(...)
|
|
|
|
updates = {'nblk': 7, 'nbasis': 32}
|
|
|
|
a += updates
|
|
|
|
|
|
|
|
or, to call a function with a combination of parameters:
|
|
|
|
|
|
|
|
Reserved private members of the Parameters object:
|
|
|
|
* _no_null_ = (True/False, default False) look for non-null (non-"None") values
|
|
|
|
in all the parameter lists until one is found.
|
|
|
|
* _list_ = (list) the list of parameter dicts to search from.
|
|
|
|
* _kwparam_ = (string, default "_opts_") the default name of the function argument
|
|
|
|
that will hold excess named arguments.
|
|
|
|
Used in _create_() function below.
|
|
|
|
If this is set to None, we will not use this feature.
|
|
|
|
* _userparam_ = (string, default "_p") the default name of the function argument
|
|
|
|
that will contain Parameters-like object given by the user.
|
|
|
|
Used in _create_() function below.
|
|
|
|
If this is set to None, we will not use this feature.
|
|
|
|
|
|
|
|
The most overriding list of parameters, as provided via excess key=value
|
|
|
|
arguments in creating this Parameters object, are stored in "self".
|
|
|
|
"""
|
|
|
|
|
|
|
|
class _self_weakref_:
|
|
|
|
"""A minimal proxy object, just enough to get a weakref to the 'self' object
|
|
|
|
below to be accesible via a few dict-like lookup mechanisms.
|
|
|
|
Also needed to avoid recursive `in' and [] get operators below."""
|
|
|
|
def __init__(self, obj):
|
|
|
|
self.ref = weakref.ref(obj)
|
|
|
|
def __contains__(self, key):
|
|
|
|
return dict.__contains__(self.ref(), key)
|
|
|
|
def __getitem__(self, key):
|
|
|
|
return dict.__getitem__(self.ref(), key)
|
|
|
|
|
|
|
|
def __init__(self, *_override_dicts_, **_opts_):
|
|
|
|
"""
|
|
|
|
Creates a new Parameters() object.
|
|
|
|
The unnamed arguments are taken to be dict-like objects from which we will
|
|
|
|
search for parameters.
|
|
|
|
We silently ignore `None' values which are passed in this way.
|
|
|
|
Parameters will be searched in left-to-right order of these dict-like
|
|
|
|
objects.
|
|
|
|
Then the keyword-style arguments passed on this constructor will become
|
|
|
|
the most overriding options.
|
|
|
|
|
|
|
|
The dict-like objects must contain the following functionalities:
|
|
|
|
* for key in obj:
|
|
|
|
...
|
|
|
|
(in other words, the __iter__() method).
|
|
|
|
* key in obj
|
|
|
|
* obj[key]
|
|
|
|
That's it!
|
|
|
|
|
|
|
|
Example:
|
|
|
|
defaults = { 'walltime': '6:00:00', 'nwlk': 100 }
|
|
|
|
# ...
|
|
|
|
p = Parameters(defaults, walltime='7:00:00', nblk=300)
|
|
|
|
|
|
|
|
Then when we want to use it:
|
|
|
|
>> p.nwlk
|
|
|
|
100
|
|
|
|
>> p.walltime
|
|
|
|
'7:00:00'
|
|
|
|
>> p.nblk
|
|
|
|
300
|
|
|
|
|
|
|
|
Options:
|
|
|
|
* _no_null_ = if True, look for the first non-None value.
|
|
|
|
* _flatten_ = will flatten the key-value pairs.
|
|
|
|
Note that this may make the Parameters object unnecessarily large in memory.
|
|
|
|
Additionally, this means that the updates in the contents of the dicts
|
|
|
|
passed as the _override_dicts_ can no longer be reflected in this object
|
|
|
|
because of the shallow copying involved here.
|
|
|
|
* _kwparam_
|
|
|
|
* _userparam_
|
|
|
|
At present, the `flatten' attribute will not be propagated to the child
|
|
|
|
Parameters objects created by this parent object.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Remove standard dict procedure names not beginning with "_":
|
|
|
|
for badkw in self.__dict__:
|
|
|
|
if not badkw.startswith("_"):
|
|
|
|
del self.__dict__[badkw]
|
|
|
|
# Store the user-defined overrides in its own container:
|
|
|
|
dict.clear(self)
|
|
|
|
if _opts_.get('_flatten_', False):
|
|
|
|
for p in _override_dicts_:
|
|
|
|
dict.update(self, p)
|
|
|
|
dict.update(self, _opts_)
|
|
|
|
else:
|
|
|
|
dict.update(self, _opts_)
|
|
|
|
# WARNING: Using weakref proxy is important:
|
|
|
|
# - to allow clean deletion of Parameters() objects when not needed
|
|
|
|
# - to avoid recursive 'in' and 'get[]' operators.
|
|
|
|
paramlist = (Parameters._self_weakref_(self),) + _override_dicts_ #+ tuple(deflist))
|
|
|
|
#paramlist = (self,) + _override_dicts_ #+ tuple(deflist))
|
|
|
|
self.__dict__["_list_"] = [ p for p in paramlist if p != None ]
|
|
|
|
self.__dict__["_kwparam_"] = _opts_.get("_kwparam_", "_opts_")
|
|
|
|
self.__dict__["_userparam_"] = _opts_.get("_userparam_", "_p")
|
|
|
|
self.__dict__["_no_null_"] = ifelse(_opts_.get("_no_null_"), True, False)
|
|
|
|
# Finally, filter out reserved keywords from the dict:
|
|
|
|
for badkw in ("_kwparam_", "_userparam_", "_no_null_", "_flatten_"):
|
|
|
|
#if badkw in self: del self[badkw] -- recursive!!!
|
|
|
|
if dict.__contains__(self,badkw): del self[badkw]
|
|
|
|
def _copy_(self):
|
|
|
|
"""Returns a copy of the Parameters() object."""
|
|
|
|
return Parameters(_no_null_=self._no_null_,
|
|
|
|
_kwparam_=self._kwparam_,
|
|
|
|
_userparam_=self._userparam_,
|
|
|
|
*self._list_[1:],
|
|
|
|
**self)
|
|
|
|
def __getattr__(self, key):
|
|
|
|
"""Allows options to be accessed in attribute-like manner, like:
|
|
|
|
opt.niter = 3
|
|
|
|
instead of
|
|
|
|
opt['niter'] = 3
|
|
|
|
"""
|
|
|
|
if self._no_null_:
|
|
|
|
for ov in self._list_:
|
|
|
|
if key in ov and ov[key] != None: return ov[key]
|
|
|
|
else:
|
|
|
|
for ov in self._list_:
|
|
|
|
if key in ov: return ov[key]
|
|
|
|
# Otherwise: -- but most likely this will return attribute error:
|
|
|
|
return dict.__getattribute__(self, key)
|
|
|
|
def __setattr__(self, key, value):
|
|
|
|
"""This method always sets the value on the object's dictionary.
|
|
|
|
Values set will override any values set in the input parameter lists."""
|
|
|
|
self[key] = value
|
|
|
|
def __contains__(self, key):
|
|
|
|
if self._no_null_:
|
|
|
|
for ov in self._list_:
|
|
|
|
if key in ov and ov[key] != None: return True
|
|
|
|
else:
|
|
|
|
for ov in self._list_:
|
|
|
|
if key in ov: return True
|
|
|
|
return False
|
|
|
|
def __getitem__(self, key):
|
|
|
|
if self._no_null_:
|
|
|
|
for ov in self._list_:
|
|
|
|
if key in ov and ov[key] != None: return ov[key]
|
|
|
|
else:
|
|
|
|
for ov in self._list_:
|
|
|
|
if key in ov: return ov[key]
|
|
|
|
raise KeyError, "Cannot find parameter `%s'" % key
|
|
|
|
#def __setitem__(self, key, value): # -- inherited from dict
|
|
|
|
# self._prm_[key] = value
|
|
|
|
|
|
|
|
# TODO in the future for iterative accesses:
|
|
|
|
# -- not that essential because we know the name of
|
|
|
|
# the parameters we want to get:
|
|
|
|
#def __iter__(self): # -- inherited from dict
|
|
|
|
# """Returns the iterator over key-value pairs owned by this object.
|
|
|
|
# This does NOT return key-value pairs owned by the _override_dicts_.
|
|
|
|
# """
|
|
|
|
# return self._prm_.__iter__()
|
|
|
|
#def _iteritems_(self):
|
|
|
|
# return self._prm_.iteritems()
|
|
|
|
def _update_(self, srcdict):
|
|
|
|
"""Updates the most overriding parameters with key-value pairs from
|
|
|
|
srcdict.
|
|
|
|
Srcdict can be either a dict-derived object or a Parameters-derived
|
|
|
|
object."""
|
|
|
|
dict.update(self, srcdict)
|
|
|
|
def __add__(self, srcdict):
|
|
|
|
"""Returns a copy of the Parameters() object, with the most-overriding
|
|
|
|
parameters updated from the contents of srcdict."""
|
|
|
|
rslt = self._copy_()
|
|
|
|
rslt._update_(srcdict)
|
|
|
|
return rslt
|
|
|
|
def _create_(self, kwparam=None, userparam=None, *defaults):
|
|
|
|
"""Creates a new Parameters() object for standardized function-level
|
|
|
|
parameter lookup.
|
|
|
|
This routine *must* be called by the function where we want to access these
|
|
|
|
parameters, and where some parameters are to be overriden via function
|
|
|
|
arguments, etc.
|
|
|
|
|
|
|
|
The order of lookup is definite:
|
|
|
|
* local variables of the calling subroutine will take precedence
|
|
|
|
* the excess keyword-based parameters,
|
|
|
|
* user-supplied Parameters-like object, which is
|
|
|
|
* the dicts (passed in the `defaults' unnamed parameter list) is searched
|
|
|
|
*last*.
|
|
|
|
I suggest that this is used only as a last-effort safety net.
|
|
|
|
Ideally, the creating Parameters object itself should contain the
|
|
|
|
'factory defaults', as shown in the example below.
|
|
|
|
|
|
|
|
class Something(object):
|
|
|
|
def __init__(self, ...):
|
|
|
|
# self.opts holds the factory default
|
|
|
|
self.opts = Parameters()
|
|
|
|
self.opts.cleanup = True # example
|
|
|
|
|
|
|
|
def doit(self, src=None, info=None,
|
|
|
|
_defaults_=dict(src="source.txt", info="INFO.txt", debug=1),
|
|
|
|
**_opts_):
|
|
|
|
# FIXME: use self-introspection to reduce kitchen-sink params here:
|
|
|
|
p = self.opts._create_(_defaults_)
|
|
|
|
# ^ This will create an equivalent of:
|
|
|
|
# Parameters(locals(), _opts_, _opts_.get('opts'), self.opts, _defaults)
|
|
|
|
# Now use it:
|
|
|
|
if p.cleanup:
|
|
|
|
... do something
|
|
|
|
"""
|
|
|
|
# Look up the stack of the calling function in order to retrieve its
|
|
|
|
# local variables
|
|
|
|
from inspect import stack
|
|
|
|
caller = stack()[1][0] # one frame up; element-0 is the stack frame
|
|
|
|
|
|
|
|
if kwparam == None: kwparam = self._kwparam_
|
|
|
|
if userparam == None: userparam = self._userparam_
|
|
|
|
|
|
|
|
# local variables will be the first scope to look for
|
|
|
|
localvars = caller.f_locals
|
|
|
|
contexts = [ localvars ]
|
|
|
|
# then _opts_ excess-keyword parameters (see example of doit() above)
|
|
|
|
if kwparam in localvars:
|
|
|
|
_opts_ = localvars[kwparam]
|
|
|
|
contexts.append(_opts_)
|
|
|
|
else:
|
|
|
|
_opts_ = {}
|
|
|
|
# then opts, an explicitly-defined argument which contain a set of parameters
|
|
|
|
if userparam in localvars:
|
|
|
|
opts = localvars[userparam]
|
|
|
|
contexts.append(opts)
|
|
|
|
else:
|
|
|
|
opts = {}
|
|
|
|
if userparam in _opts_:
|
|
|
|
contexts.append(_opts_[userparam])
|
|
|
|
|
|
|
|
# then this own Parameters data will come here:
|
|
|
|
contexts.append(self)
|
|
|
|
|
|
|
|
# then any last-minute defaults
|
|
|
|
contexts += [ d for d in defaults ]
|
|
|
|
|
|
|
|
# Now construct the Parameters() class for this calling function:
|
|
|
|
return Parameters(_kwparam_=kwparam, _userparam_=userparam, *contexts)
|
|
|
|
|
|
|
|
#def __dict__(self):
|
|
|
|
# return self._prm_
|